Introduction

- **Components**
 - Lymph is the fluid
 - Vessels: lymphatics
 - Structures & organs
- **Functions**
 - Return tissue fluid to the bloodstream
 - Transport fats from the digestive tract to the bloodstream
 - Surveillance & defense

Lymphatics

- Originate as **lymph capillaries**
- Capillaries unite to form larger vessels
 - Resemble veins in structure
 - Connect to lymph nodes

Main Channels of Lymphatics

- **Left and right lymphatic ducts** empty into large veins just before they join the superior vena cava

Major Lymphatic Vessels of the Trunk

Lymph Tissue

- **Diffuse lymphatic tissue**
 - No capsule present
 - Found in connective tissue of almost all organs
- **Lymphatic nodules**
 - No capsule present
 - Oval-shaped masses
 - Found singly or in clusters
- **Lymphatic organs**
 - Capsule present
 - Lymph nodes, spleen, thymus gland
Tonsils
- Multiple groups of large lymphatic nodules
- Location – mucous membrane of the oral and pharyngeal cavities
- **Palatine tonsils**
 - Posterior-lateral walls of the oropharynx
- **Pharyngeal tonsil**
 - Posterior wall of nasopharynx
- **Lingual tonsils**
 - Base of tongue

Lymph Nodes
- Oval structures located along lymphatics
- Enclosed by a fibrous capsule
- Divided into compartments
 - **Sinuses**
 - Produce lymphocytes
- Lymph enters nodes through afferent lymphatics, flows through sinuses, exits through efferent lymphatic

Spleen
- Largest lymphatic organ
- Located between the stomach & diaphragm
- Structure – similar to node
 - Capsule present
 - No afferent lymphatic vessels
- Contains
 - Lymphatic tissue
 - Red blood cells
 - Lymphocytes (plasma cells)
 - Other leukocytes
- Functions
 - Filters & stores blood

Thymus Gland
- Location – behind the sternum
- Function
 - **Differentiation** and maturation of T cells

Function of the Lymphatic System
- Defense against harmful organisms and chemicals
 - **Nonspecific resistance**
 - Inherited
 - Wide variety of body reactions against a wide range of pathogens
 - **Specific resistance**
 - Resistance to a specific disease-causing microorganisms

Nonspecific Resistance
- **Skin**
 - 1st line of defense
 - Mechanical and chemical factors that fight disease
- **Tears**
- **Saliva**
- **Flow of urine**
- **Gastric juice**
Nonspecific Resistance (cont’d)

- **Interferon (IFN)**
 - Produced by body cells infected with viruses
 - Then released by the infected cells
 - Inhibits viral replication in neighboring cells
 - Decreases disease-producing power of many viruses
- **Phagocytosis**
- **Inflammation**
- **Fever**

Specific Resistance = Immunity

- Involves the production of a specific cell or molecule (antibody) to destroy a specific disease-causing organism or its toxin (antigen).
- **Innate Immunity**
 - Inborn immunity
- **Acquired Immunity**
 - Immunity acquired during organisms’ lifetime

Characteristics of the Immune Response

- **Specificity**
 - Involves the production of a specific cell or antibody to destroy a particular antigen
- **Memory**
 - Acquired ability to detect and eliminate foreign substances
 - Self vs. non-self recognition
 - **MHC**
 - Involves lymphocytes (B cells and T cells)

What is an antibody?

- Large protein
- Minimum of two binding sites which combine with antigens
- Also known as "immunoglobulins"

What is an antigen?

- **Antigen** = "antibody generating" molecule
 - any chemical substance that, when introduced into the body, causes the body to produce specific antibodies that can react with the antigen
- Properties of antigens:
 - **Foreign** proteins or polysaccharides
- Examples:
 - Cell membranes, flagella, viruses, toxins, pollen, transplanted tissues & organs, markers on red blood cells
What does an antigen do?

- Antigen stimulates the formation of specific antibodies
- Antibodies bind to the antigen
 - Forms an antigen-antibody complex
- The formation of the antigen-antibody complex ultimately leads to inactivation and removal of the antigen

Lymphocytes Initiate the Immune Response

- Types of lymphocytes
 - T cells
 - 80% of circulating lymphocytes
 - B cells
 - 10 – 15% of circulating lymphocytes
 - NK cells
 - 5 – 10% of circulating lymphocytes

Lymphocytes and the Immune Response

- Direct attack by T cells
 - Virus & bacterial infected host cells, fungi, parasites, transplanted tissues, tumors, etc.
- Attack by circulating antibodies
 - Released by plasma cells derived from activated B cells

T Cells and Immunity

- 1000s of different types of T cells
- When an antigen enters the body, only the particular T cell programmed to react with the antigen becomes activated
 - Macrophages phagocytize the antigen
 - Macrophages present it to the T cell
- T cells increase in size, divide, differentiate
 - Cytotoxic T cells
 - Helper T cells
 - Memory T cells

B Cells and Immunity

- 1000s of different kinds of B cells
 - Each type responds to a specific antigen
- When an antigen enters the blood
 - B cells are activated
 - Become plasma cells
 - Circulate in blood and lymph to reach site of invasion
 - B cells become memory B cells
 - Respond more rapidly and forcefully should a 2nd invasion occur
Disorders of the Immune System

- Allergy
- Autoimmune diseases
- Severe Combined Immunodeficiency (SCID)
- Acquired Immune Deficiency Syndrome (AIDS)
 - Human immunodeficiency virus (HIV)