1. **Parametric Surfaces:**
Recall a space curve which is defined by the vector valued function $\mathbf{r}(t) = (x(t), y(t), z(t))$. It is a function of one variable and defines a curve in \mathbb{R}^3.

Now, similarly, we let our domain be a region D in the uv-plane. Let

$$\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k},$$

which is a vector valued function in \mathbb{R}^3. Still, we say x, y, and z are component functions of \mathbf{r}, but now they are function of two variables, u and v with domain D.

The set of all points (x, y, z) in \mathbb{R}^3 such that

$$x = x(u, v) \quad y = y(u, v) \quad z = z(u, v)$$

where u and v are let to vary throughout D is called a **parametric surface** S, and the above equations are the parametric equations of S.

2. **Example 1:** Identify the surface with vector equations $\mathbf{r}(u, v) = (v, \cos(u), 2\sin(u))$, $0 \leq v \leq 3$.

What would we get if we restricted the domain D to $-\pi / 2 \leq u \leq \pi / 2$, $0 \leq v \leq 3$?
3. **Grid Curves**: A helpful tool in visualizing parametric surfaces is to consider its **grid curves**. We obtain grid curves by holding either u or v constant.

For example, note the grid curves from the computer generated parametric surfaces from **example 1**.

4. **Example 2 (if time, do last)**: For the parametric surface, $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$, graphed below, identify which grid lines have u constant and which grid lines have v constant where

\[
\begin{align*}
x &= (1-u)(3+\cos v)\cos(4\pi u) \\
y &= (1-u)(3+\cos v)\sin(4\pi u) \\
z &= 3u + (1-u)\sin v
\end{align*}
\]
5. **Example 3**: For the parametric surface, \(\mathbf{r}(u,v) = (u \cos v, u \sin v, \sin u) \), graphed below, identify which grid lines have \(u \) constant and which grid lines have \(v \).

![Parametric Surface Diagram](image)

6. More often, we are given a surface, and need to find a vector function that represents that surface.

Example 4: Find a vector function that represents the plane that passes through the point \(P_o \) with position vector \(\mathbf{r}_o \) and that contains two nonparallel vectors \(\mathbf{a} \) and \(\mathbf{b} \).

If we write \(\mathbf{r}_o = (x_o, y_o, z_o) \), \(\mathbf{a} = (a_1, a_2, a_3) \) and \(\mathbf{b} = (b_1, b_2, b_3) \), then \(\mathbf{r} = (x, y, z) \) becomes:

7. **Example 5**: Find the parametric representation of the sphere \(x^2 + y^2 + z^2 = a^2 \).

![Sphere Diagram](image)
8. **Example 6**: Find the parametric representation of the surface which is the part of the cylinder \(x^2 + z^2 = 4 \) that lies between the planes \(y = -2 \) and \(y = 6 \).

9. **Example 7**: Find a parameterization of the part of the cone \(z = 2\sqrt{x^2 + y^2} \) that lies below the sphere \(x^2 + y^2 + z^2 = 10 \).

10. In general, if a surface is given as a function of \(x \) and \(y \), that is \(z = f(x, y) \), then we can parameterize the surface \(S \) by:

11. **Surface of Revolution** (if time): Consider the 5B surface obtained by rotating the curve \(y = f(x), \ a \leq x \leq b \), about the \(x \)-axis, where \(f(x) \geq 0 \). Let \(\theta \) be the angle of rotation. If \((x, y, z) \) is a point on \(S \), then we can parametric the surface as
12. **Tangent Planes:**

Let S be a surface described by the vector function

$$
\mathbf{r}(u,v) = x(u,v) \mathbf{i} + y(u,v) \mathbf{j} + z(u,v) \mathbf{k}.
$$

At the point P_o, whose position vector is $\mathbf{r}_o(u_o,v_o)$:

(a) holding u constant $u = u_o$, we define a grid curve C_1 on $S \left[C_1 : \mathbf{r}(u_o,v) \right]$. The tangent vector to C_1 at P_o is found by

(b) similarly, holding v constant $v = v_o$, we define a grid curve C_2 on S. The tangent vector to C_2 at P_o is found by taking the partial derivative of \mathbf{r} with respect to u at u_o.

$$
\mathbf{r}_u = \mathbf{r}_u(u_o,v_o) = \frac{\partial x}{\partial u}(u_o,v_o) \mathbf{i} + \frac{\partial y}{\partial u}(u_o,v_o) \mathbf{j} + \frac{\partial z}{\partial u}(u_o,v_o) \mathbf{k}.
$$

So long as $\mathbf{r}_u \times \mathbf{r}_v \neq \mathbf{0}$, the surface is called **smooth** (it has no “corners”). For such a smooth surface, the **tangent plane** is the plane that contains the vectors \mathbf{r}_u and \mathbf{r}_v, and the vector $\mathbf{r}_u \times \mathbf{r}_v$ is a normal vector to the tangent plane.

13. **Example 8:** Find an equation of the tangent plane to the surface with parametric equations $x = u^2$, $y = v^2$, $z = uv$ with $u = 1$, $v = 1$.

Section 16.6
14. **Surface Area:**

We proceed as usual, chop and add!

(a) Divide \(D \) into many many sub-rectangles \(R_{ij} \).

(b) Choose \((u_i^*, v_j^*)\) to be the bottom left-hand corner of \(R_{ij} \), because we can.

(c) \(R_{ij} \) maps to a part of the surface \(S \), \(S_{ij} \), called a patch. The point \(P_{ij} \) with position vector \(\mathbf{r}(u_i^*, v_j^*) \) will be one of the corners of \(S_{ij} \).

(d) The tangent vectors \(\mathbf{r}_u(u_i^*, v_j^*) \) and \(\mathbf{r}_v(u_i^*, v_j^*) \) are two nice tangent vectors to \(S \) that can be used to approximate \(S_{ij} \). Find an approximation for \(a \):

\[
\text{Similarly, } \mathbf{b} = \Delta v \mathbf{r}_v(u_i^*, v_j^*)
\]

Then, the area of \(S_{ij} \) is approximately: _________________________________

And, the surface area of \(S \) is thus approximated by: __________________________

Henceforth! Definition (6): If a smooth parametric surface \(S \) is given by the equation

\[
\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k} \quad (u, v) \in D
\]

and is covered just once as \((u, v)\) ranges through the parametric domain \(D \), then the **surface area** of \(S \) is

\[
A(S) = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| dA
\]

where

\[
\mathbf{r}_u = \frac{\partial x}{\partial u} \mathbf{i} + \frac{\partial y}{\partial u} \mathbf{j} + \frac{\partial z}{\partial u} \mathbf{k} \quad \text{and} \quad \mathbf{r}_v = \frac{\partial x}{\partial v} \mathbf{i} + \frac{\partial y}{\partial v} \mathbf{j} + \frac{\partial z}{\partial v} \mathbf{k}
\]
15. **Example 9**: Find the surface area of the part of the sphere of radius a to the right of the plane $y = 0$.

16. **Surface Area of the Graph of a Function**: For the special case when S is a surface defined by a function of the form $z = f(x,y)$ where (x,y) lies in D and f has continuous partial derivative, we take x and y as parameters as before, and parameterize S as

$$x = x \quad \quad y = y \quad \quad z = f(x, y)$$

Find the surface area of S:
17. **Example 10**: Find the surface area of the part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices $(0, 0), (0, 1), \text{ and } (2, 1)$.

18. Note, for a good read on how we have not contradicted 5B surface areas of revolution, see page 1078.