Do the following problems and write answers in the space provided. If writing a sentence, use complete, correct English sentences. Show important algebraic steps. When appropriate, partial credit can be given only if the steps and work are clearly shown.

1. A pond has a population of 500 frogs. Over a ten-year period the number \(N \) of frogs depends on the year \(t \) as indicated in the following graph.

 Interpret, in the context of this problem, the meaning of the horizontal and vertical intercepts. Include appropriate units. (4 pts. each)

 i) horizontal intercept:

 ii) vertical intercept:

2. The temperature \(H \), in degrees Celsius, of a cup of coffee placed on the kitchen counter is given by \(H = f(t) \), where \(t \) is minutes since the coffee was put on the counter. (4 pts. each),

 a) Interpret, in the context of this problem, the meaning of \(f(3) = 20 \).
 Include appropriate units in your answer.

 b) Interpret, in the context of this problem, the meaning of \(f'(3) = -2 \).
 Include appropriate units in your answer.

3. The average weight, in pounds, of American men in their sixties is a linear function of their heights, in inches, that is, \(w = f(h) \). Data is given below. (The data was collected in 1979.)

<table>
<thead>
<tr>
<th>height (h), inches</th>
<th>68</th>
<th>70</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight (w), pounds</td>
<td>166</td>
<td>176</td>
<td>191</td>
</tr>
</tbody>
</table>

 a) Find the slope of this linear function. (4 pts.)

 \[3.a) \ m = \]

 b) Find a linear function for the weight \(w \) as a function of the height \(h \).
 Clearly show work. Use \(h \) & \(w \) not \(x \) & \(y \)! (4 pts.)

 \[3.b) \]

 c) Interpret, in the context of this problem, the meaning of the slope.
 Include appropriate units in your answer. (4 pts.)
4. A company that makes patio chairs has fixed costs of $5000 and variable costs (MC) of $30 per chair. The company sells the chairs for $50 each. Let q to represent the number of patio chairs made or sold. Assume all functions are linear
 a) Find the cost function C, the revenue function R and the profit function \(\pi \). (6 pts.)

\[
C = \\
R = \\
\pi = \\
\]

b) What is the break-even point, \(q_0 \), for this company? That is, how many patio chairs would have to be made and sold in order to begin to make a profit? (3 pts.)

b) \(q_0 = \)

5. Values for three different functions are given below.

<table>
<thead>
<tr>
<th>t</th>
<th>f(t)</th>
<th>g(t)</th>
<th>h(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>12</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>0</td>
<td>17</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>81</td>
<td>25</td>
</tr>
</tbody>
</table>

a) i) Which of these functions could be linear? Clearly show or explain how you know.
 ii) Find a formula for this function. (4 pts.)

b) i) Which function could be exponential? Clearly show or explain how you know.
 ii) Find a formula for this function. (4 pts.)

 c) Is the remaining function: i) increasing or decreasing? ____________
 (2 pts. each)
 ii) concave up or concave down? ____________

6. Let \(P \) be the population of a town at year \(t \).
 a) If \(P = 1000e^{-0.06t} \), what is the continuous rate of growth or decay? (3 pts.)
 Include appropriate units in your answer.

 6. a)

b) If instead this population increased by 50 people a year, what is the function \(P \)? (3 pts.)

b)

page 2 of 4
7. The population of Nicaragua was 3.6 million in 1990 and growing at 3.4% per year. Let \(P \) be the population, in millions, and let \(t \) be the years since 1990. (3 pts. each)
 a) Express \(P \) as a function in the form \(P = 3.6 a^t \).

 7.a) \(P = \) \\

 b) Convert \(P \) to a function of the form \(P = P_0 e^{kt} \).
 (Round \(k \) to 2 decimal places.)

 7.b) \(P = \) \\

8. The quantity \(Q \), in mg, of an antibiotic in a person's bloodstream \(t \) hours since the antibiotic was taken is described by \(Q = 250(0.6)^t \).
 a) What is the growth or decay rate? Include appropriate units. (3 pts.)

 8.a) \\

 b) What is an approximation of the instantaneous rate of change after \(t = 3 \) hours? Include appropriate units. (Hint: Use the interval \(t = 3 \) to \(t = 3.1 \)) (5 pts.)
 Round to one decimal place.

 8.b) \\

9. Refer to the graph of a function \(y = f(x) \) given below to determine if the following quantities are positive, negative or zero. (2 pts. each)

 \[y = f(x) \]

 a) \(f(1) \) \\
 b) \(f'(0) \) \\
 c) \(f''(-1) \) \\

10. The following graph shows the height \(h \), in inches, of a bean plant \(t \) days after germination. What is the approximate growth rate (rate of change of \(h \) with respect to \(t \)) on the 15th day? Include appropriate units! (4 pts.)

 10)

 (Graph showing height vs. days since germination with points (15, 11), (30, 25))
11. Given the following data about a function f.

<table>
<thead>
<tr>
<th>x</th>
<th>3.0</th>
<th>3.2</th>
<th>3.4</th>
<th>3.6</th>
<th>3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>8.2</td>
<td>9.5</td>
<td>10.5</td>
<td>11.0</td>
<td>13.2</td>
</tr>
</tbody>
</table>

a) What is the total change in f between $x = 3.2$ and $x = 3.8$
(2 pts.)

b) Find the average rate of change of f between $x = 3.2$ and $x = 3.8$
(4 pts.)

c) Estimate $f'(3.2)$. (Use an interval to the right)
(5 pts.)

d) Estimate the slope of the tangent line at $x = 3.4$. (Use an interval to the right)
(5 pts.)

12. On the given axes, sketch the graph of the derivative of the following function $y = f(x)$.
(5 pts.)

\[y = f(x) \]

\[y' = f'(x) \]