Vapor Pressure and Equilibrium

Open Container (vapor escaping) evaporation

Closed Container (vapor accumulating)

Closed Container (vapor at equilibrium)

Rate of Vaporization \gg Rate of Condensation

Rate of Vaporization \gg Rate of Condensation

Rate of Vaporization $=\approx$ Rate of Condensation

Vapor Pressure: the partial pressure of the vapor of a substance, above the surface of that substance, at equilibrium

- Vapor Pressure depends on the intermolecular forces between the particles and the temperature
 - $\equiv\approx$ A substance with stonger IMFs has a lower VP at the same temperature
 - $\equiv\equiv$ The higher the temperature, the higher the VP (more particles have energy to overcome IMFs)

Equilibrium: the system does not change with time

- When the rates of the forward and reverse processes (vaporization & condensation) are equal, there is no net change in the amount of vapor or liquid, therefore the system is in dynamic equilibrium.