Study Questions
1. Describe the structure of an atom.
2. List 2 variations an atom can have and still be the same type of atom.
3. Explain the law of conservation of mass.
4. Compare and contrast acids and bases. Give examples of each.
5. Describe the pH scale.
6. Compare and contrast lipids, carbohydrates, proteins, and nucleic acids with regard to their composition, structure, and function.

Introduction to Chemistry
Matter: anything that takes up space and has mass
Elements: substance that cannot be broken down further by chemical means

Atom: smallest unit of matter unique to a particular element; building blocks of matter
Subatomic particles: Small particles that are the building blocks from which atoms are made
• Protons
• Neutrons
• Electrons

Protons:
• located in nucleus
• positive charge
• # protons specific to type of element
• # protons equals # electrons (for neutral atoms)

Neutrons:
• Located in nucleus
• No charge (neutral)
• # of neutrons can vary ("isotopes")

Electrons:
Orbit the nucleus
Have negative charge
electrons = # protons (in neutral atoms)
of electrons can vary ("ions")

Chemical Bonding
Atoms join together to form molecules or compounds by forming chemical bonds
Covalent bonds: atoms share electrons
Ionic bonds: atoms transfer electrons
Chemical formula: represents the number and type of atoms in a molecule

Examples: H₂O, O₂, CO₂, C₆H₁₂O₆

Chemical reactions: interactions between atoms or molecules that produce new and different substances (different chemical formulas)

Example: CH₄ + 2 O₂ → CO₂ + 2 H₂O

("reactants" on the left, "products" on the right of the reaction arrow)

Law of Conservation of Mass: atoms cannot be created or destroyed

Balanced chemical equation: written chemical reaction in which the number of atoms of each type of element is the same on both sides of the reaction arrow

CH₄ + 2 O₂ → CO₂ + 2 H₂O

Practice: SO₂ + O₂ → SO₃

Is this equation balanced?

2SO₂ + O₂ → 2SO₃

Practice: H₂ + Cl₂ → HCl

Is this equation balanced?

H₂ + Cl₂ → 2HCl

Energy

Energy: capacity to do work

Examples: Light, heat, sound, X-ray, ultra-violet (UV), infrared (IR)

- **Kinetic:** energy of motion
- **Potential:** stored energy, energy of position

1st law of thermodynamics: energy is conserved, it is neither created nor destroyed

Acid/Base Chemistry

Acid: substance that donates H⁺ ions

Base: substance that accepts H⁺ ions

Examples of acids:

citric acid (C₆H₈O₇), acetic acid (C₂H₄O₂) hydrochloric acid (HCl), sulfuric acid (H₂SO₄), phosphoric acid (H₃PO₄)

Examples of bases:

ammonia (NH₃), lye (NaOH), baking soda (NaHCO₃)

pH scale quantifies how acid or how basic a solution is

- pH scale ranges from 0-14
- pH less than 7 is **acidic**
- pH greater than 7 is **basic**
- pH equal to 7 is **neutral**

The more acidic a solution is, the lower its pH value and the more H⁺ ions it has
Introduction to Biology

Cells: membrane-bound compartments within which processes of life occur

Organelles: small structures within cells that have specialized functions (nucleus, ribosomes, etc.)

Important Organic Molecules:

- Proteins
- Carbohydrates
- Lipids
- Nucleic Acids

Organic: carbon-based molecules that make up living organisms

Proteins:

- Made of chains of amino acids
- Provide structure and support
- Function as enzymes (catalysts)

Carbohydrates:

- Made of chains of sugar molecules (glucose, etc.)
- Provide structure
- Energy source
Lipids:
- Include fats, phospholipids, and steroids
- Provide structure (phospholipids)
- Energy source (fats)
- Hormones, vitamins (steroids)

Nucleic Acids:
- Genetic information (DNA, RNA)
- Protein synthesis
- Energy carriers (ATP)
- Made of chains of nucleotides

Nucleotide: a “backbone” and a “base” (adenine, guanine, cytosine, thymine, uracil)

DNA was “Molecule of the Year” in 1943!
- DNA is the genetic “blueprint” for a cell
- DNA is replicated each time a cell divides
- Mutations in DNA can lead to changes in proteins

6 Kingdoms of Life
Evolution: gradual changes due to random mutations in genetic material and competition for scarce resources