1. Assign oxidation numbers to all of the underlined atoms in each of the following.
 a. HNO₃
 b. Na₂C₂O₄
 c. (NH₄)Ce(SO₄)₃
 d. Ce₂O₃

2. For each of the following equations:
 a. Balance by the half-reaction method for the pH conditions specified.
 b. Indicate the oxidizing agent, the reducing agent, the species oxidized, and the species reduced.

 a. Al(s) + MnO₄⁻(aq) → Al³⁺(aq) + Mn²⁺(aq) (acidic solution)

 b. PO₃⁻₅(aq) + MnO₄⁻(aq) → PO₄³⁻(aq) + MnO₂(s) (basic solution)

3. For the skeleton reaction: IO₃⁻(aq) + Fe²⁺(aq) → Fe³⁺(aq) + I₂(s)
 a. Sketch the galvanic cell. Show the direction of electron flow and of ion migration through the salt bridge.
 b. Identify the cathode and the anode.
 c. Calculate the E° value for the cell. Assume all concentrations are 1.0 M and all partial pressures are 1.0 atm.
 d. Give the overall balanced reaction.

4. In acidic solution, ozone and manganese(II) react spontaneously according to the following skeleton reaction:
 $\text{O}_3(g) + \text{Mn}^{2+}(aq) \rightarrow \text{O}_2(g) + \text{MnO}_2(s)$
 a. Write the half-reactions for oxidation and reduction.
 b. Write the overall balanced redox reaction.
 c. If $E^{\circ}_{\text{cell}} = +0.84 \text{ V}$ and $E^{\circ}_{\text{ozone}} = +2.07 \text{ V}$, calculate $E^{\circ}_{\text{Mn}^{2+}/\text{Mn}}$.
5. A voltaic cell consists of a Mn/Mn\(^{2+}\) half-cell and a Pb/Pb\(^{2+}\) half-cell. Calculate \([\text{Pb}^{2+}]\) when \([\text{Mn}^{2+}] = 1.3 \text{ M}\) and \(E_{\text{cell}} = 0.42 \text{ V}\).

6. Given the reactions:
 \[
 \begin{align*}
 \text{Ag(s)} & \rightarrow \text{Ag}^{+} \text{(aq)} + e^- & E^{0}_{\text{ox}} = -0.80 \text{ V} \\
 \text{AgCl(s)} + e^- & \rightarrow \text{Ag(s)} + \text{Cl}^{-} \text{(aq)} & E^{0}_{\text{red}} = +0.22 \text{ V}
 \end{align*}
 \]
 Calculate \(K_{\text{sp}}\) of AgCl.

7. For Ni(s) and Ag\(^{+}\)\text{(aq)}
 a. Calculate the value of the equilibrium constant at 25°C.
 b. Calculate \(\Delta G^{0}\).

8. A concentration cell consists of two Sn/Sn\(^{2+}\) half-cells. The electrolyte in compartment A is 0.13 M Sn(NO\(_3\))\(_2\); in compartment B, it is 0.87 M Sn(NO\(_3\))\(_2\).
 a. Which compartment houses the cathode?
 b. Calculate the voltage of the cell.