Physics 4A

Motion in 2 and 3 Dimensions

Motion in One Dimension
Motion in 2 and 3 Dimensions
Projectile Motion

Motion in One Dimension

\[\Delta x = \bar{v}_x \Delta t \]
\[\bar{a}_{ave} = \frac{\Delta \bar{v}}{\Delta t} \]

Motion in Two and Three Dimensions

\[\bar{r} = x\hat{i} + y\hat{j} + z\hat{k} \]
\[\Delta \bar{r} = \Delta x\hat{i} + \Delta y\hat{j} + \Delta z\hat{k} \]

Displacement, velocity, and acceleration are defined the same as in Chapter 2, except now in three dimensions.

Displacement
\[\Delta \bar{r} = \bar{r}_2 - \bar{r}_1 \]

Position
\[\bar{r} = x\hat{i} + y\hat{j} + z\hat{k} \]
Projectile motion can be considered the superposition of both a horizontal motion and a vertical motion.

In projectile motion, the horizontal and vertical motions are independent of each other.