Physics 4A

Error Analysis or Experimental Uncertainty

- **Error**
 - In Physics language, error does not mean a mistake.
 - **Error** refers to the difference between an observed or measured result and the true value.
 - No measurement, no matter how carefully made, can be completely free of errors.
 - There are two types of experimental error: **systematic errors** and **random errors**.

Systematic Error

- **Systematic errors** refer to errors that result from mistakes inherent in a particular apparatus (i.e., bad equipment).
 - **A slow clock**
 - **A short meter stick**

- When systematic errors are present, the measured results are always shifted away from the true results in a given direction (i.e., too high or too low).

- **Systematic Error**
 - There is some control over systematic errors (i.e., using better equipment).
 - Systematic errors are usually very hard to detect and extremely hard to evaluate.
 - In lab, we will assume that all forms of systematic error have been identified and minimized.
Random Error

random (statistical) errors \Rightarrow experimental uncertainties associated with random fluctuations of any measurement apparatus

\Rightarrow random errors usually result from instrumental uncertainties and/or statistical fluctuations

\Rightarrow random errors can be reduced by repeating the experiment many times and averaging the results

\Rightarrow random errors can be treated mathematically using statistics

Mean, σ, and SE

\Rightarrow in lab, we will be using three quantities to express the experimental result of a set of measurements of some quantity x:

Mean (\bar{x}) \Rightarrow the average of all measurements (gives your best estimate of the value of the result)

Standard deviation (σ_x) \Rightarrow indicates how spread out your different measurements were

Standard Error (SE) \Rightarrow gives the best measure of the uncertainty in the mean

Mean (Average)

\Rightarrow Suppose that I gave the same test to two different classes. If I wanted to know how well each class did, what number would I use to compare the two classes?

\Rightarrow I would probably use the average or mean from each class.

\Rightarrow However, there is a major problem with only looking at the average. What is it???
Deviation from the Mean

⇒ What we would like is some indication of how spread out the test scores are from each class.

⇒ One possibility would be to calculate the average deviation, where the deviation \(d \) for each value is defined as:

\[
\text{deviation} = \text{value} - \text{average}
\]

⇒ However, there is a major problem with calculating the average deviation. What is it???

⇒ The average deviation is always zero!!!

<table>
<thead>
<tr>
<th>Test Scores</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>4</td>
</tr>
<tr>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>74</td>
<td>-1</td>
</tr>
<tr>
<td>74</td>
<td>-1</td>
</tr>
<tr>
<td>74</td>
<td>-1</td>
</tr>
<tr>
<td>74</td>
<td>-1</td>
</tr>
<tr>
<td>70</td>
<td>-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Scores</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>99</td>
<td>24</td>
</tr>
<tr>
<td>96</td>
<td>21</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>68</td>
<td>-7</td>
</tr>
<tr>
<td>67</td>
<td>-8</td>
</tr>
<tr>
<td>66</td>
<td>-9</td>
</tr>
<tr>
<td>63</td>
<td>-12</td>
</tr>
<tr>
<td>59</td>
<td>-16</td>
</tr>
<tr>
<td>57</td>
<td>-18</td>
</tr>
</tbody>
</table>

Standard Deviation

⇒ The standard deviation \(\sigma \) is the quantity used to describe how spread out the values are in a given set of data.

⇒ The standard deviation \(\sigma \) is defined as follows:

\[
\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (d_i)^2} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}
\]

1) First, find the mean (average) of all values: \(\bar{x} \)

2) Then, for each value, find the deviation of that value from the mean and square it:

\((x_i - \bar{x})^2 \)
Standard Deviation

\[\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (d_i)^2} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2} \]

3) Then, find the average of all of the deviations squared (dividing by N-1 instead of N):

\[\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2 \]

4) Finally, take the square root of the average of the deviations squared:

\[\sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2} \]

The sum of all deviations squared is 58

\[58 / (10-1) = \frac{58}{9} = 6.44 \]

\[\sqrt{6.4} = 2.5 \]

⇒ The standard deviation for class 1 is \(\sigma = 2.5 \)

Standard Deviation

<table>
<thead>
<tr>
<th>Test Scores</th>
<th>Deviation</th>
<th>Deviation^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>78</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>77</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>74</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>-5</td>
<td>25</td>
</tr>
</tbody>
</table>

⇒ The standard deviation for class 2 is \(\sigma = 17 \)

Standard Deviation

The sum of all deviations squared is 2560

\[2560 / (10-1) = 284 \]

\[\sqrt{284} = 17 \]

⇒ The standard deviation \(\sigma \) gives us an idea of how spread out the values in a given data set are.

small \(\sigma \) ⇒ values are close together
large \(\sigma \) ⇒ values are spread out

⇒ Statistically, ~68% (95%) of the values in a data set should fall within 1\(\sigma \) (2\(\sigma \)) of the mean. This means that ~68% of the values should fall within the range: mean – \(\sigma \) and mean + \(\sigma \) and ~95% of the values should fall within mean ± 2\(\sigma \).
Standard Deviation

(Class 1)

average = 75 \hspace{0.5cm} \sigma = 2.5

\Rightarrow \text{~68% of the value should fall within the range: } 75 - 2.5 \text{ and } 75 + 2.5

\Rightarrow \text{~68% of the values should fall between 72.5 and 77.5}

(Class 2)

average = 75 \hspace{0.5cm} \sigma = 17

\Rightarrow \text{~68% of the value should fall within the range: } 75 - 17 \text{ and } 75 + 17

\Rightarrow \text{~68% of the values should fall between 58 and 92}

\Rightarrow \text{Statistically, \sim 68% of the values in a data set should fall within } 1\sigma \text{ of the average, \sim 95% of the values in a data set should fall within } 2\sigma \text{ of the average, and \sim 99% of the values in a data set should fall within } 3\sigma \text{ of the average.}

Standard Error

\Rightarrow \text{The standard deviation of a set a means (i.e. from all lab groups) is called the standard error.}

\Rightarrow \text{The standard error gives the best estimate of the uncertainty of the mean from any individual lab group.}

\Rightarrow \text{Statistical theory tells us that even when we have only a single set of measurements, we can still estimate the uncertainty in the mean.}
Standard Error
⇒ For a single set of measurements, the standard error is defined as:

\[SE = \frac{\sigma}{\sqrt{N}} \]

\(\sigma = \text{standard deviation} \)
\(N = \text{number of measurements} \)

⇒ In lab, we will report the result of a set of measurements of a quantity \(x \) as

\[x = \bar{x} \pm 2SE \]

Are Results Consistent with Theory?
⇒ In 4A, we will use the following criteria to determine whether an experimental measurement of \(x \) is consistent with the theoretical prediction \(x_{\text{thy}} \):

\[\bar{x} - 2SE \leq x_{\text{thy}} \leq \bar{x} + 2SE \]

then the experiment result and the theoretical prediction are consistent.

⇒ That is, if the theoretical result falls within two standard errors of the mean, the experimental result is consistent with the model.