1. Identify Reciprocals

Two numbers are **reciprocals** of each other when their product is one.

Example 1 Identify which pairs of numbers are reciprocals.

a) \(\frac{3}{4}, -\frac{4}{3} \)
 b) \(-\frac{4}{5}, -\frac{5}{4} \)
 c) \(3, \frac{1}{3} \)
 d) \(-5, 5 \)

2. Use the Multiplication Property to Solve Equations.

A) Multiplication property of equality.
 1) Multiplying **both sides** of an equation by the same **non-zero number** produces an equivalent equation.
 2) Any **real number except zero** may be used, including negative numbers, fractions, decimals, etc.

B) Solve equations using the multiplication property.
 1) Multiply both sides by the **reciprocal** of the coefficient of the variable term.
 2) The coefficient becomes 1, which may be omitted since \(1 \cdot x = x \).
 3) Note that **multiplying by the reciprocal** of \(x \) is the same as dividing by \(x \).

Example 2 Solve the equations and check.

a) \(3y = 27 \)
 b) \(\frac{t}{6} = 4 \)
 c) \(\frac{2}{7}w = 6 \)

 d) \(16 = -4x \)
 e) \(-24x = -18 \)
 f) \(2b = -\frac{4}{5} \)

3. Solve equations of the form \(-x = a \).

 1) Remember a solution is of the form \(x = a \), where \(a \) is a real number, so \(-x = a \) is **not a solution**.
 2) Isolate the variable by **multiplying** both sides of the equation by \(-1 \). Note: multiplying by -1 is the same as changing the sign of every term.

Example 3 Solve the equations.

a) \(-r = 17 \)
 b) \(-q = -10 \)
 c) \(-a = \frac{1}{2} \)