Please show all your work on these pages. Graphing calculators are not allowed; you may use a scientific calculator. All answers should be exact (e.g. $\sqrt{2}$ is exact: 1.414... is not). Answers obtained without supporting work may not receive full credit.

1. Find the area of the region inside the cardioid $r = 2 + 2 \sin \theta$ and outside of the circle $r = 1$.

2. Given the points $A = (2, 3, 1)$, $B = (3, 2, 5)$, and $C = (6, 3, -3)$, find:
 a. parametric equations for the line that passes through A and B.
 b. the angle $\angle BAC$.
 c. the equation of the plane (in the form $ax + by + cz = d$) through these three points.

3. If $r(t) = <4t, 2 \cos t, 2 \sin t>$, find: (20 points)
 a. the length of the curve between $(0, 2, 0)$ and $(2\pi, 0, 2)$.
 b. $T\left(\frac{\pi}{3}\right)$
 c. the curvature κ (as a function of t).

4. Given the equation $z^2 = 36 + 9x^2 - 4y^2$:
 a. Classify this quadric surface.
 b. Find the equation of the tangent plane to this surface at the point $(2, 3, -6)$.
 c. Suppose that the positive y-axis points north and the x-axis east. If one travels on this surface in a northeast direction from the point $(2, 3, -6)$, does one's elevation (as measured by the z-value) increase or decrease? Explain.

5. A package in the shape of a rectangular box can be mailed by parcel post if the sum of its length and girth is at most 84 inches (girth is the perimeter of a cross-section perpendicular to the length). Find the dimensions of the package with largest volume that can be mailed by parcel post.
6. Evaluate $\int_0^1 \int_{2x}^{2} e^{y^2} \, dy \, dx$ [Note: $\int e^{y^2} \, dy$ cannot be done]

7. Use Green's Theorem to evaluate $\oint_C (e^x + 5y) \, dx + (7x - \cos y) \, dy$, where C is the simple closed curve given by the x-axis, the line $x + y = 6$, and the parabola $y = x^2$, traversed counterclockwise (see figure).

8. Given: $\mathbf{F}(x, y) = <3x^2 - 2xy, 10y - x^2>$
 a. Evaluate $\int_C \mathbf{F} \cdot \, d\mathbf{r}$ directly, where C is the line segment from $(1, 0)$ to $(2, 3)$.
 b. Evaluate $\int_C \mathbf{F} \cdot \, d\mathbf{r}$ directly, where C is the part of the parabola $y = x^2 - 1$ from $(1, 0)$ to $(2, 3)$.
 c. Use the Fundamental Theorem of line integrals to evaluate $\int_C \mathbf{F} \cdot \, d\mathbf{r}$ along any path C that starts at $(1, 0)$ and ends at $(2, 3)$.

9. Given $\mathbf{F}(x, y, z) = z \sin y \, \mathbf{i} + x \cos z \, \mathbf{j} + (1 + z^2) \, \mathbf{k}$
 a. Find curl \mathbf{F}.
 b. Find div \mathbf{F}.
 c. Use the Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot \, d\mathbf{S}$, where S is the surface of the solid bounded by the first-octant portion of the paraboloid $f(x, y) = 1 - x^2 - y^2$ and the coordinate planes.
1. Area = \(2 \int_{-\pi/6}^{\pi/6} \frac{1}{2}((2 + 2\sin \theta)^2 - 1^2) \, d\theta \)

2. a. \(x = 2 + t; \ y = 3 - t; \ z = 1 + 4t \)
 b. \(\cos^{-1} \left(-\frac{1}{2} \right) = \frac{2\pi}{3} \)
 c. \(x + 5y + z = 18 \)

3. a. \(\int_0^{\pi/2} \sqrt{(4)^2 + (-2\sin t)^2 + (2\cos t)^2} \, dt = \pi \sqrt{5} \)
 b. \(< \frac{2}{\sqrt{5}}, \frac{-\sqrt{3}}{2\sqrt{5}}, \frac{1}{2\sqrt{5}} > \)
 c. \(\frac{1}{10} \)

4. a. hyperboloid of one sheet
 b. \(3x - 2y + z = -6 \)
 c. decreases; directional derivative is negative
 \[z = f(x, y) = -\sqrt{36 + 9x^2 - 4y^2} \]
 \[D_u(f) \bigg|_{(2,3)} = \nabla f \cdot \left< \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right> = -\frac{1}{\sqrt{2}} \]

5. Minimize \(A = lwh \) subject to \(2l + 2w + h = 84 \)
 dimensions are \(14'' \times 14'' \times 28'' \)

6. switch order of integration: \(\int_0^2 \int_0^{\pi/2} e^{y^2} \, dx \, dy = \ldots = \frac{1}{4} (e^4 - 1) \)
7. \[\int_0^4 \int_{\sqrt{y}}^{6-y} (2) \, dx \, dy = \ldots = \frac{64}{3} \]

8. a. \[\int_0^1 (84t - 6t^2) \, dt = 40 \]
 b. \[\int_1^2 (16x^3 + 3x^2 - 18x) \, dx = 40 \]
 c. \[(x^3 - x^2y + 5y^2) \bigg|_{(2,3)}^{(1,0)} = 40 \]

9. a. \[\langle x \sin z, \sin y, \cos z - z \cos y \rangle \]
 b. \[2z \]
 c. \[\int \int \int_{x^2 + y^2 \leq 1} \int_0^{1-x^2-y^2} (2z) \, dz \, dA = \ldots = \frac{\pi}{12} \]