Chapter 3
Statistics for Describing, Exploring, and Comparing Data

3-1 Overview
3-2 Measures of Center
3-3 Measures of Variation

Section 3-1: Overview

- **Descriptive Statistics**
 summarize or describe the important characteristics of a known set of data

- **Inferential Statistics**
 use sample data to make inferences (or generalizations) about a population

3-2 Measures of Center

Key Concept
When describing, exploring, and comparing data sets, these characteristics are usually extremely important: center, variation, distribution, outliers, and changes over time.

Definition

- **Measure of Center**
 the value at the center or middle of a data set

Definition

- **Arithmetic Mean**
 (Mean)

 the measure of center obtained by adding the values and dividing the total by the number of values

Notation

- Σ denotes the sum of a set of values.
- x is the variable usually used to represent the individual data values.
- n represents the number of values in a sample.
- N represents the number of values in a population.
Notation

\[\bar{x} \text{ is pronounced ‘x-bar’ and denotes the mean of a set of sample values} \]
\[\bar{x} = \frac{\sum x}{n} \]

\[\mu \text{ is pronounced ‘mu’ and denotes the mean of all values in a population} \]
\[\mu = \frac{\sum x}{N} \]

Definitions

- **Median**
 - the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude
 - often denoted by \(\bar{x} \) (pronounced ‘x-tilde’)
 - is not affected by an extreme value

Finding the Median

- If the number of values is odd, the median is the number located in the exact middle of the list.

- If the number of values is even, the median is found by computing the mean of the two middle numbers.

Mode - Examples

- **Mode**
 - the value that occurs most frequently
 - Mode is not always unique
 - A data set may be:
 - Bimodal
 - Multimodal
 - No Mode

Mode is the only measure of central tendency that can be used with nominal data.
Definition

- **Midrange**

 the value midway between the maximum and minimum values in the original data set

\[
\text{Midrange} = \frac{\text{maximum value} + \text{minimum value}}{2}
\]

Round-off Rule for Measures of Center

Carry one more decimal place than is present in the original set of values.

Mean from a Frequency Distribution

Assume that in each class, all sample values are equal to the class midpoint.

\[
\bar{x} = \frac{\sum (f \cdot x)}{\sum f}
\]

Weighted Mean

In some cases, values vary in their degree of importance, so they are weighted accordingly.

\[
\bar{x} = \frac{\sum (w \cdot x)}{\sum w}
\]

Best Measure of Center

- **Mean**
 - Find the sum of all values, then divide by the number of values
- **Median**
 - The middle value in the ordered data
- **Mode**
 - The value that occurs most frequently
- **Midrange**
 - The value midway between the maximum and minimum values
Definitions

- **Symmetric**
 - Distribution of data is symmetric if the left half of its histogram is roughly a mirror image of its right half.

- **Skewed**
 - Distribution of data is skewed if it is not symmetric and if it extends more to one side than the other.

Skewness

- In this section we have discussed:
 - Types of measures of center
 - Mean
 - Median
 - Mode
 - Mean from a frequency distribution
 - Weighted means
 - Best measures of center
 - Skewness

Section 3-3: Measures of Variation

Key Concept

Because this section introduces the concept of variation, which is something so important in statistics, this is one of the most important sections in the entire book.

Place a high priority on how to interpret values of standard deviation.

Definition

The **range** of a set of data is the difference between the maximum value and the minimum value.

\[\text{Range} = (\text{maximum value}) - (\text{minimum value}) \]

Definition

The **standard deviation** of a set of sample values is a measure of variation of values about the mean.
Sample Standard Deviation Formula

\[s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} \]

Sample Standard Deviation (Shortcut Formula)

\[s = \sqrt{\frac{n\sum(x^2) - (\sum x)^2}{n(n - 1)}} \]

Standard Deviation - Important Properties

- The standard deviation is a measure of variation of all values from the mean.
- The value of the standard deviation \(s \) is usually positive.
- The value of the standard deviation \(s \) can increase dramatically with the inclusion of one or more outliers (data values far away from all others).
- The units of the standard deviation \(s \) are the same as the units of the original data values.

Population Standard Deviation

\[\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}} \]

This formula is similar to the previous formula, but instead, the population mean and population size are used.

Definition

- The variance of a set of values is a measure of variation equal to the square of the standard deviation.

Sample variance: Square of the sample standard deviation \(s \)

Population variance: Square of the population standard deviation \(\sigma \)

Variance - Notation

standard deviation squared

Notation \(\begin{cases} s^2 & \text{Sample variance} \\ \sigma^2 & \text{Population variance} \end{cases} \)
Round-off Rule for Measures of Variation

Carry one more decimal place than is present in the original set of data.

Round only the final answer, not values in the middle of a calculation.

Estimation of Standard Deviation

Range Rule of Thumb

For estimating a value of the standard deviation s, use

$$s = \frac{\text{Range}}{4}$$

Where range = (maximum value) – (minimum value)

Empirical (68-95-99.7) Rule

For data sets having a distribution that is approximately bell shaped, the following properties apply:

- About 68% of all values fall within 1 standard deviation of the mean.
- About 95% of all values fall within 2 standard deviations of the mean.
- About 99.7% of all values fall within 3 standard deviations of the mean.

The Empirical Rule

- 68% within 1 standard deviation
- 95% within 2 standard deviations
- 99.7% within 3 standard deviations
The Empirical Rule

99.7% of data are within 3 standard deviations of the mean ($\mu - 3\sigma$ to $\mu + 3\sigma$).

95% within 2 standard deviations

68% within 1 standard deviation

The end of Section 3-3 has a detailed explanation of why $n - 1$ rather than n is used. The student should study it carefully.

Definition

Chebyshev’s Theorem

The proportion (or fraction) of any set of data lying within K standard deviations of the mean is always at least $1 - 1/K^2$, where K is any positive number greater than 1.

- For $K = 2$, at least $3/4$ (or 75%) of all values lie within 2 standard deviations of the mean.
- For $K = 3$, at least $8/9$ (or 89%) of all values lie within 3 standard deviations of the mean.

Rationale for using $n-1$ versus n

Recap

In this section we have looked at:

- Range
- Standard deviation of a sample and population
- Variance of a sample and population
- Range rule of thumb
- Empirical distribution
- Chebyshev’s theorem