Eukaryotic cell

Review of haploid, diploid, mitosis and meiosis

Fundamentals

- Genes are DNA sequences that code for proteins
- Proteins catalyze reactions and make up structures
 - Thus genes indirectly control every reaction and structure making up a cell
- Genes are carried together on chromosomes

Other big difference between prokaryotic and eukaryotic DNA

- Eukaryotic genes are spread among multiple chromosomes.
- Almost all eukaryotic organisms are diploid at some stage in their life cycle.
 - This means that they have two copies of each chromosome - one from mom and one from dad.
- Thus they also have two copies of each gene.

Prokaryotic Chromosomes and Cell Division

- Prokaryotic Genomes
 - Bacterial Chromosomes - Single strands of DNA
 - Reproduction - Binary Fission (asexual)

The Cell Cycle

Cellular Division

- Three main functions of cell divisions
 - Reproduction
 - Growth and development
 - Tissue renewal
- **Mitosis** is a process of cell division that preserves chromosome number (e.g., diploid to diploid, haploid to haploid, or dikaryotic to dikaryotic) and results in genetically identical cells.
 - Happens during a variety of processes, including simple growth, asexual reproduction, repair.
- **Meiosis** is the process of cell division whereby chromosome number is reduced by half (e.g., diploid to haploid).
 - Happens during sexual reproduction.
 - Results in genetically variable haploid cells (usually spores or gametes).

Mitosis

- The Process of cell division that results in the production of 2 daughter cells that are genetically identical to each other and to the parent cell from which they arose.
- Mitosis is for cell growth, development and repair (also asexual reproduction).
- Occurs in **Somatic** Tissues.

Cytokinesis- Animals

- **Cleavage furrow**
 - Contracting ring of microfilaments
- **(a) Animal cell**

Cytokinesis- Plants

- **(b) Plant cell**

Genetic Variation

- Lets look around the class at our variation in Phenotype (how our genes are expressed on the outside).
- Lots of variation exists...why?
 - Helps with survival.
Genetic Variation

- So variation is good for a population, how do we get it?

- Genetic Variation in Bacteria
 - Antibiotic resistance from random mutations

Genetic Variation

- Antibiotic Resistance
 - 1 in a million genes per generation will mutate
 - E. coli reproduces in 20 minutes (Generation Time)
 - $1...2...4...8...16...32...64...7$ hours = $1,000,000$ cells!!!
 - If one of these cells mutated so it was resistant, how many resistant cells in 7 more hours?

Genetic Variation

- So, for organisms with very short generation times, depending on mutations for genetic variation can be OK
- What is your generation time?
- Can’t depend on mutations for variation...too slow
- Why is there Sex?
 - Provides a way to mix genes and get variation

Meiosis

- The process of cell division that results in the production of 4 haploid gametes that are genetically different from one another and from the parents.
- In Mitosis we made exact copies of the parent cells, with two sets of chromosomes
- In Meiosis the result is different cells with only one set of chromosomes

Meiosis - Overview

Copyright © 2002 by Benjamin Cummings, an imprint of Addison Wesley

Copyright © 2004 by Benjamin Cummings, an imprint of Addison Wesley
How do we get our Genetic Variation?

- **Random Assortment**
 - We have a set of chromosomes from mom and a set from dad, which of these gets into the gametes is random
 - Four chromosome example: \(2^2 = 4\) combos
 - Humans have 23 chromosomes:
 \(23^2 = 8,589,938\) different combos from each parent.
 - Over **64 trillion** different combinations of your parents genes!!

- **Crossing Over**
 - The exchange of corresponding segments between two homologous chromosomes.
 - Scrambles up the genes
 - Happens in Prophase I of Meiosis
 - Figure 7.18- example with one chromosome

Extra Chromosomes

When Meiosis Has Errors

- **Alteration of Chromosome Structure**
 - Four main types of structural changes
 - Deletion, Duplication, Inversion, and Translocation
Errors are a source of Variation

- Most errors are “bad”, but some can be good.
- New species can be developed from extra chromosome numbers (polyploid)
- Beneficial changes will persist, damaging ones will disappear

Polyploidy

- More than 2 sets of chromosomes (diploid)
- Very common in plants (50-60% of flowering plants!)
- Can occur as a result of non-disjunction during meiosis
- Can occur when cytokinesis fails
- Can occur between two species-interspecific hybrid
- Leads to reproductive failure (eg. With diploids)
- Can lead to new species - especially sympatric speciation

Key points

- Mitosis results in production of genetically identical cells
 - Involved in growth, asexual reproduction
- Meiosis results in halving chromosome number, results in genetic variability
 - A key step in sexual reproduction