INSTRUCTOR VERSION

Topology

Objectives

- Configure trunking, VTP, and inter-VLAN routing using router-on-a stick
- Configure GLBP
- Configure GLBP priorities
- Configure GLBP object tracking.

Background

Although HSRP and VRRP provide gateway resiliency for the standby members of the redundancy group, the upstream bandwidth is not used while the device is in standby mode. Only the active router for HSRP and the master for VRRP groups forward traffic for the virtual MAC. Resources associated with the standby router are not
fully utilized. Some load balancing can be accomplished with these protocols through the creation of multiple
groups and through the assignment of multiple default gateways, but this configuration creates an administrative
burden. Previous labs provided you with experience configuring HSRP and VRRP to act as First Hop
Redundancy Protocols. Gateway Load Balancing Protocol (GLBP) performs a similar function in redundancy, but
offers the capability to load balance over multiple gateways.

GLBP is a Cisco-proprietary solution created to enable automatic selection and simultaneous use of multiple
available gateways in addition to automatic failover between those gateways. Multiple routers share the load of
frames that, from a client perspective, are sent to a single default gateway address.

Like HSRP and VRRP, an election occurs, but rather than a single active router winning the election, GLBP elects
an Active Virtual Gateway (AVG). The AVG assigns virtual MAC addresses to each of the routers in the GLBP
group (called Active Virtual Forwarders or AVFs). These virtual MAC addresses are then provided to hosts in an
algorithmic manner in response to ARP requests from hosts for the default gateway.

GLBP allows for simultaneous forwarding from routers participating in a GLBP group. GLBP can support up to 4
routers in a group. GLBP also offers authentication and object tracking.

In this lab, you will set the network up by configuring trunking, VTP, VLANs, router-on-a-stick and EIGRP routing.
Once the network is set up, you will configure and verify GLBP.

Note: This lab uses Cisco ISR G2 routers running Cisco IOS 15.4(3) images with IP Base and Security packages
enabled, and Cisco Catalyst 3560 and 2960 switches running Cisco IOS 15.0(2) IP Services and LAN Base
images, respectively. The 3560 switches are being used only as layer 2 devices in this lab topology. The switches
have Fast Ethernet interfaces, so the routing metrics for all Ethernet links in the labs are calculated based on 100
Mb/s, although the routers have Gigabit Ethernet interfaces. The 3560 and 2960 switches are configured with the
SDM templates “dual-ipv4-and-ipv6 routing” and “lanbase-routing”, respectively. Depending on the router or
switch model and Cisco IOS Software version, the commands available and output produced might vary from
what is shown in this lab. Catalyst 3650 switches (running any Cisco IOS XE release) and Catalyst 2960-Plus
switches (running any release).

Note(2): The 3 switches in this topology are only being used to support layer-2 functions, so 3 Cisco 2960
switches are acceptable for this lab. All Inter-VLAN routing will be facilitated by implementing a router-on-a-stick
on R1 and R3.

Note(3): This lab's topology is based on the NETLAB Multi-Purpose Academy Pod (MAP). If your classroom is
using the standard Cuatro Switch Pod, the PC names may be different than displayed here. Consult with your
instructor.

Required Resources

- 2 Cisco 3560 with the Cisco IOS Release 15.0(2)SE6 C3560-IPSERVICESK9-M image or comparable
- 1 Cisco 2960 with the Cisco IOS Release 15.0(2)SE6 C2960-LANBASEK9-M image or comparable
- Three routers (This lab uses Cisco ISR G2 routers running Cisco IOS 15.4(3) images with IP Base
 and Security packages enabled, or comparable)
- Ethernet and console cables
- 3 PC's with Windows OS
Step 1: Prepare the switches for the lab

Use the `reset.tcl` script you created in Lab 1 “Preparing the Switch” to set your switches up for this lab. Then load the file `BASE.CFG` into the running-config with the command `copy flash:BASE.CFG running-config`. An example from DLS1:

```
DLS1# tclsh reset.tcl
Erasing the nvram filesystem will remove all configuration files! Continue? [confirm]
[OK]
Erase of nvram: complete
Reloading the switch in 1 minute, type reload cancel to halt

Proceed with reload? [confirm]

*Mar  7 18:41:40.403: %SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
<switch reloads - output omitted>

Would you like to enter the initial configuration dialog? [yes/no]: n
Switch> en
*Mar  1 00:01:30.915: %LINK-5-CHANGED: Interface Vlan1, changed state to administratively down
Switch# copy BASE.CFG running-config
Destination filename [running-config]?
184 bytes copied in 0.310 secs (594 bytes/sec)
DLS1#
```

Step 2: Configure basic switch parameters.

On each switch, configure an IP address on the management VLAN according to the diagram. VLAN 1 is the default management VLAN, but following best practice, we will use a different VLAN. In this lab, VLAN 99 will be used as the management VLAN.

```
DLS1 example:
DLS1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
DLS1(config)# interface vlan 99
DLS1(config-if)# ip address 10.1.99.3 255.255.255.0
DLS1(config-if)# no shutdown

The interface VLAN 99 will not come up immediately, because the Layer 2 instance of the VLAN does not yet exist. This issue will be remedied in subsequent steps.

(Optional) On each switch, create an enable secret password and configure the VTY lines to allow remote access from other network devices.
```
DLS1 example:

DLS1(config)# enable secret class
DLS1(config)# line vty 0 15
DLS1(config-line)# password cisco
DLS1(config-line)# login

Note: The passwords configured here are required for NETLAB compatibility only and are NOT recommended for use in a live environment.

Note(2): For purely lab environment purposes, it is possible to configure the VTY lines so that they accept any Telnet connection immediately, without asking for a password, and place the user into the privileged EXEC mode directly. The configuration would be similar to the following example for DLS1:

DLS1(config)# enable secret class
DLS1(config)# line vty 0 15
DLS1(config-line)# no login
DLS1(config-line)# privilege level 15

Step 3: Configure trunks and EtherChannels between switches.

EtherChannel is used for the trunks because it allows you to utilize both Fast Ethernet interfaces that are available between each device, thereby doubling the bandwidth.

Configure trunks and EtherChannels from DLS1, DLS2, and ALS1 according to the diagram. Use LACP as the negotiation protocol for EtherChannel configurations. Remember that BASE.CFG has all interfaces shut down, so don't forget to issue the no shutdown command.

Refer to diagram for port channel numbers.

Note: The switchport trunk encapsulation dot1q command is required on Cisco 3560 switches. It is not required on Cisco 2960 switches.

DLS1(config)# interface range fastEthernet 0/1-2
DLS1(config-if-range)# switchport trunk encapsulation dot1q
DLS1(config-if-range)# switchport mode trunk
DLS1(config-if-range)# channel-group 1 mode active
DLS1(config-if-range)# no shut
Creating a port-channel interface Port-channel 1

Verify trunking and EtherChannel configurations between all switches with the appropriate trunking and EtherChannel verification commands. Refer back to Chapter 3 labs as necessary.

Step 4: Configure VTP Client mode on DLS2 and ALS1.

A sample configuration is provided for you.

DLS2(config)# vtp mode client
Setting device to VTP client mode for VLANS

Note: Switches default to vtp mode server. However, remember the base configuration modifies this setting to vtp mode transparent.
Step 5: Configure VTP and VLANs on DLS1.

Create the VTP domain on VTP server DLS1 and create VLANs 10, 20, and 99 for the domain.

NOTE: Switches default to vtp mode server. Recall that the base configuration modifies this setting to vtp mode transparent.

DLS1(config)# vtp domain GLBP
DLS1(config)# vtp version 2
DLS1(config)# vtp mode server

Setting device to VTP Server mode for VLANS

DLS1(config)# vlan 99
DLS1(config-vlan)# name Management
DLS1(config-vlan)# vlan 10
DLS1(config-vlan)# name Office
DLS1(config-vlan)# vlan 20
DLS1(config-vlan)# name Server
DLS1(config-vlan)# exit

Verify that VLANs propagated to the other switches in the network.

Step 6: Configure switch access ports.

As the diagram illustrates, there are PCs connected to DLS1 fa0/6, DLS2 fa0/18, and ALS1 fa0/18. All PCs connected to the lab topology will statically access VLAN 10. Additionally, configure spanning-tree portfast on these switchports. The simplest way to do all of this is to use the switchport host macro. Also, don't forget to issue the no shutdown command.

DLS1(config)# interface FastEthernet 0/6
DLS1(config-if)# switchport access vlan 10
DLS1(config-if)# switchport host
 switchport mode will be set to access
 spanning-tree portfast will be enabled
 channel group will be disabled

DLS1(config-if)# no shutdown

Repeat this configuration for interface fa0/18 on DLS2 and ALS1, and then verify the switchports on DLS1, DLS2 and ALS1 are members of VLAN 10.

Step 7: Configure DLS1 and DLS2 trunking to the R1 and R3 router.

Configure DLS1 and DLS2 interface fa0/5 for trunking with the R1 and R3 router Gigabit Ethernet interface, according to the topology diagram. An example from DLS1:

DLS1(config)# interface FastEthernet 0/5
DLS1(config)# switchport trunk encap dot1q
DLS1(config)# switchport mode trunk
DLS1(config)# no shutdown

Note: The switchport trunk encapsulation dot1q command is required on Cisco 3560 switches. It is not required on Cisco 2960 switches.
Step 8: Configure basic settings on R1, R2, and R3.

Configure basic settings on all three routers. An example for R1 follows:

```
Router> enable
Router# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# hostname R1
R1(config)# enable secret class
R1(config)# line con 0
R1(config-line)# logging synchronous
R1(config-line)# line vty 0 4
R1(config-line)# password cisco
R1(config-line)# login
R1(config-line)# exit
R1(config)#
```

Note: The passwords configured here are required for NETLAB compatibility only and are NOT recommended for use in a live environment.

In addition to the basic settings on R2, configure interface Loopback 0 with the IP address 10.1.202.1/32

```
R2(config)# interface loopback 0
R2(config-if)# ip address 10.1.202.1 255.255.255.255
R2(config-if)# no shut
R2(config-if)# exit
```

Step 9: Configure the R1 and R3 Gigabit Ethernet interfaces for VLAN trunking.

Create a sub-interface for each VLAN. Enable each sub-interface with the proper trunking protocol, and configure it for a particular VLAN with the encapsulation command. Assign an IP address to each sub-interface from the table below. Hosts on the VLAN will use this address as their default gateway.

<table>
<thead>
<tr>
<th>VLAN</th>
<th>R1</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>10.1.99.1/24</td>
<td>10.1.99.2/24</td>
</tr>
<tr>
<td>10</td>
<td>10.1.10.1/24</td>
<td>10.1.10.2/24</td>
</tr>
<tr>
<td>20</td>
<td>10.1.20.1/24</td>
<td>10.1.20.2/24</td>
</tr>
</tbody>
</table>

The following is a sample configuration for the Gigabit Ethernet 0/1 interface:

```
R1(config)# interface GigabitEthernet0/1
R1(config-if)# no shut
R1(config)# interface GigabitEthernet0/1.10
R1(config-subif)# description Office VLAN 10
R1(config-subif)# encapsulation dot1q 10
R1(config-subif)# ip address 10.1.10.1 255.255.255.0
R1(config)# interface GigabitEthernet0/1.20
R1(config-subif)# description Server VLAN 20
R1(config-subif)# encapsulation dot1q 20
R1(config-subif)# ip address 10.1.20.1 255.255.255.0
R1(config)# interface GigabitEthernet0/1.99
R1(config-subif)# description Management VLAN 99
R1(config-subif)# encapsulation dot1q 99
```
R1(config-subif)# ip address 10.1.99.1 255.255.255.0

Now, move to the R3 router to repeat similar configurations. In order for the R3 router to provide load balancing and redundancy VLAN 10, 20 and 99 networks, R3 must be configured to logically participate in the network. Create a sub-interface for each VLAN. Enable each sub-interface with the respective trunking protocol, and configure it for a particular VLAN with the encapsulation command. Assign an IP address to each sub-interface from the table above. Hosts on the VLAN can use this address as their default gateway.

Use the show ip interface brief command to verify the interface configuration and status.

R1# show ip interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded-Service-Engine0/0</td>
<td>unassigned</td>
<td>YES unset</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet0/0</td>
<td>unassigned</td>
<td>YES unset</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet0/1</td>
<td>10.1.10.1</td>
<td>YES manual</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0/1.10</td>
<td>10.1.20.1</td>
<td>YES manual</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0/1.99</td>
<td>10.1.99.1</td>
<td>YES manual</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>

Use the show vlans command on the R1 and R3 router to verify inter-vlan routing configurations. The following is a sample output from router R1. Verify configurations on router R3.

R1# show vlans

Virtual LAN ID: 1 (IEEE 802.1Q Encapsulation)

vLAN Trunk Interface: GigabitEthernet0/1

This is configured as native Vlan for the following interface(s) :
GigabitEthernet0/1 Native-vlan Tx-type: Untagged

Protocols Configured: Address: Received: Transmitted:
GigabitEthernet0/1 (1)
 Other 0 19
 17 packets, 5572 bytes input
 19 packets, 1856 bytes output

Virtual LAN ID: 10 (IEEE 802.1Q Encapsulation)

vLAN Trunk Interface: GigabitEthernet0/1.10

Protocols Configured: Address: Received: Transmitted:
GigabitEthernet0/1.10 (10)
 IP 0 0
 Other 0 2
 0 packets, 0 bytes input
 2 packets, 92 bytes output

Virtual LAN ID: 20 (IEEE 802.1Q Encapsulation)
Step 10: Configure EIGRP routing in AS 1 for use with GLBP interface tracking.

Configure R1 serial interface s0/0/0 as shown in the topology diagram. Also configure EIGRP AS 1 for the 10.0.0.0 network. Below is an example of the configuration:

```
R1(config)# int s0/0/0
R1(config-if)# ip add 10.1.1.1 255.255.255.252
R1(config-if)# no shut
R1(config)# router eigrp 1
```

Configure R2 serial interface s0/0/0 and s0/0/1 and R3 serial interface s0/0/1 using the addresses shown in the topology diagram, and configure EIGRP AS 1 for the 10.0.0.0 network.

Verify EIGRP neighbor adjacencies using the `show ip eigrp neighbor` command.

```
R1# sh ip eigrp neighbors
EIGRP-IPv4 Neighbors for AS(1)
H Address          Interface              Hold Uptime SRTT  RTO  Q  Seq
                 (sec)           (ms)         (ms)  Cnt Num
 3 10.1.99.2       Gi0/1.99                 14 00:00:21    2   100  0 10
 2 10.1.20.2       Gi0/1.20                 10 00:00:21    1   100  0 11
 1 10.1.10.2       Gi0/1.10                 14 00:00:21    1   100  0 12
 0 10.1.1.2        Se0/0/0                  14 00:00:27    1   100  0  7

R2# sh ip eigrp neighbor
EIGRP-IPv4 Neighbors for AS(1)
H Address          Interface              Hold Uptime SRTT  RTO  Q  Seq
                 (sec)           (ms)         (ms)  Cnt Num
 1 10.1.1.1.6      Se0/0/0/1                11 00:01:59    4   100  0  9
 0 10.1.1.1.1      Se0/0/0/0                10 00:02:10    1   100  0 14

R3# sh ip eigrp neighbor
EIGRP-IPv4 Neighbors for AS(1)
```
Verify the routing table and ensure that R1 and R3 can ping the loopback 0 (10.1.202.0) network connected to router R2. This network will be used to test the application of HSRP tracked interfaces.

R1# show ip route | begin Gateway

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 10 subnets, 3 masks
C 10.1.1.0/30 is directly connected, Serial0/0/0
L 10.1.1.1/32 is directly connected, Serial0/0/0
D 10.1.1.4/30
 [90/2172416] via 10.1.99.2, 00:04:15, GigabitEthernet0/1.99
 [90/2172416] via 10.1.20.2, 00:04:15, GigabitEthernet0/1.20
 [90/2172416] via 10.1.10.2, 00:04:15, GigabitEthernet0/1.10
C 10.1.10.0/24 is directly connected, GigabitEthernet0/1.10
L 10.1.10.1/32 is directly connected, GigabitEthernet0/1.10
C 10.1.120.0/24 is directly connected, GigabitEthernet0/1.120
L 10.1.120.1/32 is directly connected, GigabitEthernet0/1.120
C 10.1.99.0/24 is directly connected, GigabitEthernet0/1.99
L 10.1.99.1/32 is directly connected, GigabitEthernet0/1.99
D 10.1.202.1/32 [90/2297856] via 10.1.1.2, 00:04:15, Serial0/0/0

R3# show ip route | begin Gateway

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 10 subnets, 3 masks
D 10.1.1.0/30
 [90/2172416] via 10.1.99.1, 00:05:09, GigabitEthernet0/1.99
 [90/2172416] via 10.1.20.1, 00:05:09, GigabitEthernet0/1.20
 [90/2172416] via 10.1.10.1, 00:05:09, GigabitEthernet0/1.10
C 10.1.1.4/30 is directly connected, Serial0/0/1
L 10.1.1.6/32 is directly connected, Serial0/0/1
C 10.1.10.0/24 is directly connected, GigabitEthernet0/1.10
L 10.1.10.2/32 is directly connected, GigabitEthernet0/1.10
C 10.1.20.0/24 is directly connected, GigabitEthernet0/1.20
L 10.1.20.2/32 is directly connected, GigabitEthernet0/1.20
C 10.1.99.0/24 is directly connected, GigabitEthernet0/1.99
L 10.1.99.2/32 is directly connected, GigabitEthernet0/1.99
D 10.1.202.1/32 [90/2297856] via 10.1.1.5, 00:05:09, Serial0/0/1

From R1 and R3, ensure that you can ping the 10.1.202.1 destination address.

R1# ping 10.1.202.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.202.1, timeout is 2 seconds:

5 packets transmitted, 5 received, 0% packet loss, time 4230ms
Round trip min/avg/max = 1/1/4 ms

R3# ping 10.1.202.1
Step 11: Configure the routers for GLBP operation.

In this step you will configure a single GLBP group consisting of two members (R1 and R3). A GLBP group can have as many as four members. A single member will be elected as the AVG, and then routers will be designated as AVFs and their virtual MAC address will be distributed to hosts by the AVG in response to ARP requests.

AVG election is based on highest GLBP priority. In case of a tie, the highest assigned IP address is used. The `glbp <grp #> priority` interface configuration command can be used to modify the priority from the default of 100 in order to influence the election of the AVG. Should the AVG lose its role, the backup router with highest priority will assume the role. If you desire for the original AVG router to reassume its role once it comes back up, the `glbp <grp #> preempt` command must be configured.

The AVF is responsible for forwarding packets that are sent to the virtual MAC address assigned to that gateway by the AVG. Forward preemption is used with the AVFs and allows another AVF to assume responsibility for forwarding packets for an AVF that has lost its role or been disconnected. While AVG preemption must be manually configured, AVF preemption is enabled by default.

However, the AVFs use a weighting value rather than a priority value. Weighting thresholds are defined in conjunction with interface tracking. This functionality will be demonstrated later in the lab.

In this lab R1 will act as AVG and AVF1 and R3 will acts the AVF2. R1’s GLBP priority will be modified to ensure its election as AVG.

The standby address for each VLAN will be the host address 254; VLAN 10 will use 10.1.10.254, VLAN 20 will use 10.1.20.254.

The following is a sample GLBP configuration on R1.

```
R1(config)# interface GigabitEthernet0/1.10
R1(config-subif)# glbp 10 ip 10.1.10.254
R1(config-subif)# glbp 10 priority 150
R1(config-subif)# glbp 10 preempt
R1(config-subif)# exit
R1(config)# interface GigabitEthernet0/1.20
R1(config-subif)# glbp 20 ip 10.1.20.254
R1(config-subif)# glbp 20 priority 150
R1(config-subif)# glbp 20 preempt
R1(config-subif)# exit
R1(config)# interface GigabitEthernet0/1.99
R1(config-subif)# glbp 99 ip 10.1.99.254
R1(config-subif)# glbp 99 priority 150
R1(config-subif)# glbp 99 preempt
```

Except for the priority command, the same commands are used on the sub-interfaces on R3.
As a result of our configuration, we should see R1 router with the AVG role. Issue the `show glbp` command for GLBP configuration analysis. Before examining the output, it might be useful to take note of the MAC address of R1 and R3’s G0/1 interfaces.

```
R1# show int g0/1 | i bia
  Hardware is CN Gigabit Ethernet, address is acf2.c523.7a09 (bia acf2.c523.7a09)
R1#
R3# show int g0/1 | i bia
  Hardware is CN Gigabit Ethernet, address is acf2.c518.0651 (bia acf2.c518.0651)
R3#
R1# show glbp

GigabitEthernet0/1.10 - Group 10
  State is Active
    1 state change, last state change 00:01:28
  Virtual IP address is 10.1.10.254
  Hello time 3 sec, hold time 10 sec
    Next hello sent in 2.272 secs
  Redirect time 600 sec, forwarder timeout 14400 sec
    Preemption enabled, min delay 0 sec
  Active is local
    Standby is 10.1.10.2, priority 100 (expires in 7.840 sec)
    Priority 150 (configured)
  Weighting 100 (default 100), thresholds: lower 1, upper 100
  Load balancing: round-robin
  Group members:
    acf2.c518.0651 (10.1.10.2)
    acf2.c523.7a09 (10.1.10.1) local
  There are 2 forwarders (1 active)
    Forwarder 1
      State is Active
        1 state change, last state change 00:00:46
        MAC address is 0007.b400.0a01 (default)
        Owner ID is acf2.c523.7a09
        Preemption enabled
        Active is local, weighting 100
    Forwarder 2
      State is Listen
        MAC address is 0007.b400.0a02 (learnt)
        Owner ID is acf2.c518.0651
        Preemption enabled, min delay 30 sec
        Active is 10.1.10.2 (primary), weighting 100 (expires in 8.384 sec)
```

The `show glbp brief` command can also be used to view a brief synopsis of GLBP operation.
Step 12: Verify PCs can reach R2 L0 using the GLBP gateway

Configure the PCs with the IP Addresses shown in the topology diagram. The PCs used in this lab scenario were given access earlier to VLAN 10. The gateway address is set to the GLBP virtual address 10.1.10.254.

This is the IPCONFIG output from **SRV1** connected to **DLS1 F0/6**.

```plaintext
Connection-specific DNS Suffix . : 
Link-local IPv6 Address . . . . . : fe80::a940:91fe:38dd:da0c%10 
IPv4 Address. . . . . . . . . . . . : 10.1.1.100
```
Subnet Mask : 255.255.255.0
Default Gateway : 10.1.10.254

This is the IPCONFIG output from PC-B connected to ALS1 F0/18.

Connection-specific DNS Suffix . :
Link-local IPv6 Address : fe80::ee:d834:9d99:45e8%11
IPv4 Address : 10.1.10.101
Subnet Mask : 255.255.255.0
Default Gateway : 10.1.10.254

This is the IPCONFIG output from PC-C connected to DLS2 F0/18.

Connection-specific DNS Suffix . :
Link-local IPv6 Address : fe80::a4d3:c82d:93c4:f2e6%11
IPv4 Address : 10.1.10.102
Subnet Mask : 255.255.255.0
Default Gateway : 10.1.10.254

Verify that SRV1, PC-B, and PC-C can ping their default gateway. Upon successful ping of the gateway, view the arp cache on each PC using the arp –a.

Output from SRV1

C:\Users\student>ping -n 3 10.1.10.254

Pinging 10.1.10.254 with 32 bytes of data:
Reply from 10.1.10.254: bytes=32 time=1ms TTL=255
Reply from 10.1.10.254: bytes=32 time=1ms TTL=255
Reply from 10.1.10.254: bytes=32 time=1ms TTL=255

Ping statistics for 10.1.10.254:
 Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
 Minimum = 1ms, Maximum = 1ms, Average = 1ms

C:\Users\student>arp -a

Interface: 10.1.10.100 --- 0xa
Internet Address Physical Address Type
10.1.10.101 00-0c-29-80-cb-b6 dynamic
10.1.10.102 00-0c-29-6a-07-e6 dynamic
10.1.10.254 00-07-b4-00-0a-02 dynamic
10.1.10.255 ff-ff-ff-ff-ff-ff static
169.254.69.232 00-0c-29-80-cb-b6 dynamic
224.0.0.22 01-00-5e-00-00-16 static
224.0.0.252 01-00-5e-00-00-fc static
239.255.255.250 01-00-5e-7f-ff-fa static

The output of the arp cache reveals the 10.1.10.254 associated with GLBP virtual MAC address 00-07-b4-00-0a-02. The first address to be issued to the first client request was the 00-07-b4-00-0a-02 MAC address.
NOTE: The MAC addresses and other output you receive will vary. The important thing to note is that each router is listening for one MAC address either ending in 01 or 02 and that the AVG alternated these MAC addresses in the ARP replies as part of the default round robin algorithm.

Now, move to PC-B and ping the default gateway address 10.1.10.254. View the arp cache using the `arp -a` command.

What MAC Address has been issued to the PC-B client?

```
OUTPUT from PC-B

C:\Users\student>ping -n 3 10.1.10.254

Pinging 10.1.10.254 with 32 bytes of data:
Reply from 10.1.10.254: bytes=32 time=2ms TTL=255
Reply from 10.1.10.254: bytes=32 time=1ms TTL=255
Reply from 10.1.10.254: bytes=32 time=1ms TTL=255

Ping statistics for 10.1.10.254:
   Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 2ms, Average = 1ms

C:\Users\student>arp -a

Interface: 10.1.10.101 --- 0xb
Internet Address      Physical Address      Type
10.1.10.100           00-0c-29-15-ab-9d     dynamic
10.1.10.102           00-0c-29-6a-07-e6     dynamic
10.1.10.254           00-07-b4-00-0a-01     dynamic
10.1.10.255           ff-ff-ff-ff-ff-ff     static
11.0.0.5               00-0c-29-6a-07-e6     dynamic
224.0.0.22             01-00-5e-00-00-16     static
224.0.0.252            01-00-5e-00-00-fc     static
239.255.255.250        01-00-5e-7f-ff-fa     static
```

Repeat these steps PC-C.

What virtual MAC address is being used by PC-C?

```
Move to R1 router and issue the `show glbp brief` command. Notice how the MAC addresses correlate to the MAC address issued to the VLAN 10 clients.

R1>sh glbp brief

Interface  Grp  Fwd Pri State    Address         Active router   Standby router
Gi0/1.10   10   150 Active   10.1.10.254     local           10.1.10.2
Gi0/1.10   10   1 Active    0007.b400.0a01 local
Gi0/1.10   10   2 Listen    0007.b400.0a02 10.1.10.2   -
Gi0/1.20   20   150 Active   10.1.20.254     local           10.1.20.2
Gi0/1.20   20   1 Active    0007.b400.1401 local
```
The highlighted line above in the `show glbp brief` output shows that R1 is the active forwarder for the MAC address 0007.b400.0a01 and the standby for the MAC address 0007.b400.0a02.

Move to the R3 router and issue the `show glbp brief` command. Notice how the MAC addresses correlate to the MAC address issued to the VLAN 10 clients.

```
R3>show glbp brief
Interface   Grp  Fwd Pri State    Address         Active router   Standby router
Gi0/1.10    10  -   100 Standby  10.1.10.254     10.1.10.1       local
Gi0/1.10    10 1   -   Listen   0007.b400.0a01 10.1.10.1   -
Gi0/1.10    10 2   -   Active   0007.b400.0a02 local   -
Gi0/1.20    20  -   100 Standby  10.1.20.254     10.1.20.1       local
Gi0/1.20    20 1   -   Listen   0007.b400.1401 10.1.20.1   -
Gi0/1.20    20 2   -   Active   0007.b400.1402 local   -
Gi0/1.99    99  -   100 Standby  10.1.99.254     10.1.99.1       local
Gi0/1.99    99 1   -   Listen   0007.b400.6301 10.1.99.1   -
Gi0/1.99    99 2   -   Active   0007.b400.6302 local   -
R3>
```

The highlighted line above in the `show glbp brief` output shows that R3 is the active forwarder for the MAC address 0007.b400.0a02 and the standby for the MAC address 0007.b400.0a01. With PC-C being issued the MAC address 0007.b400.0a02, this demonstrates GLBP’s ability to offer simultaneous forwarding and load balancing from the R1 and R3 routing devices participating in GLBP.

The GLBP behavior demonstrated is based on the GLBP default load-balancing algorithm of round-robin. As clients send ARP requests to resolve the MAC address of the default gateway, the AVG reply to each client contain the MAC address of the next possible router in a round-robin fashion.

Load balancing options with GLBP are weighted, host dependent and round robin (default). The load balancing algorithm can be changed using the interface configuration command `glbp group load-balancing [host-dependent | round-robin | weighted]`.

Step 13: Configure GLBP interface tracking.

If R1’s interface s0/0/0 goes down, clients using R1 as an AVF will not be able to reach the destinations located off of the R2 router. Similarly, if R3’s serial interface s0/0/1 goes down, clients using R3 as an AVF will not be able to reach the destinations located off of the R2 router.

GLBP interface tracking uses a weighting mechanism which is different than HSRP or VRRP. With GLBP, two thresholds are defined: one lower threshold that applies when the router loses weight and one upper threshold that applies when the router regains weight. The weighting mechanism offers more flexibility with upper and lower thresholds defined over its counterparts HSRP and VRRP which only allow a single threshold to be defined. If the
router priority (or weight) falls below the threshold, the router loses its active state. As soon as the router weight (or priority) exceeds the upper threshold, the router regains its active state.

Because R1's s0/0/0 interface and R3's s0/0/1 interface affect GLBP forwarding operations, we will need to configure tracking on these interfaces. Tracking with GLBP uses objects. The first step is to track the line protocol status of R1's serial interface s0/0/0. On R1, issue the following command:

```
R1(config)# track 15 interface s0/0/0 line-protocol
```

On R1, enter in sub-interface configuration mode for VLAN 10 and configure the weighting mechanism and associate it with the track object number 15.

Consider the example configuration below.

In the first command, R1's g0/1.10 is configured with a `glbp weight` of 110 and lower threshold of 85 and an upper threshold of 105. When the weight falls below the specified lower threshold, the R1 AFV is forced to relinquish its role for the ACTIVE MAC address assigned to it.

In the second command, GLBP weighting is associated with the line protocol status of s0/0/0. If the line protocol state changes, the weight configured for 110 will be decreased by 30 resulting in a weight of 80. R1 would then lose its AVF role until the weight exceeds the upper defined threshold of 105.

```
R1(config)# interface gi0/1.10
R1(config-subif)# glbp 10 weighting 110 lower 85 upper 105
R1(config-subif)# glbp 10 weighting track 15 decrement 30
```

For testing purposes, on a PC that is using R1 as an AVF, start a continuous ping to the destination address 10.1.202.1. This will be useful to demonstrate the automatic failover of one AVF to the other when the tracked object decrements the GLBP weight.

In this lab scenario, SRV1 uses R1 as its default gateway.

Output from SRV1

```
ping 10.1.202.1 -t
```

On R1, shut down the interface s0/0/0.

```
R1(config)# int s0/0/0
R1(config-if)# shutdown
```

Notice the console messages listed below.

```
*Jul 29 12:53:45.263: %TRACK-6-STATE: 15 interface Se0/0/0 line-protocol Up -> Down
*Jul 29 12:53:45.263: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.1.1.2 (Serial0/0/0) is down: interface down
*Jul 29 12:53:47.263: %LINK-5-CHANGED: Interface Serial0/0/0, changed state to administratively down
*Jul 29 12:53:48.263: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to down
*Jul 29 12:54:19.835: %GLBP-6-FWDSTATECHANGE: GigabitEthernet0/1.10 Grp 10 Fwd 1 state Active -> Listen
```
We see state change of the tracked interface and then the GLBP state of AFV 2 go from an active state to listen.

After the GLBP state change occurs, notice the ping output from the PC. The ping should continue without fail. GLBP failed over automatically to the R3 device and the client experienced no disruption in service.

View the output of the `show glbp` command. Output has been omitted here to only show the output for group 10 since this was the only group in which we applied interface tracking.

```
R1# show glbp
GigabitEthernet0/1.10 - Group 10
    State is Active
        1 state change, last state change 18:04:27
        Virtual IP address is 10.1.10.254
        Hello time 3 sec, hold time 10 sec
            Next hello sent in 0.288 secs
        Redirect time 600 sec, forwarder timeout 14400 sec
        Preemption enabled, min delay 0 sec
        Active is local
        Standby is 10.1.10.2, priority 100 (expires in 9.376 sec)
        Priority 150 (configured)
        Weighting 80, low (configured 110), thresholds: lower 85, upper 105
            Track object 15 state Down decrement 30
            Load balancing: round-robin
            Group members:
                acf2.c518.0651 (10.1.10.2)
                acf2.c523.7a09 (10.1.10.1) local
            There are 2 forwarders (0 active)
            Forwarder 1
                State is Listen
                    2 state changes, last state change 00:05:52
                    MAC address is 0007.b400.0a01 (default)
                    Owner ID is acf2.c523.7a09
                    Redirection enabled
                    Preemption enabled, min delay 30 sec
                    Active is 10.1.10.2 (secondary), weighting 100 (expires in 10.592 sec)
                    Client selection count: 13
            Forwarder 2
                State is Listen
                    MAC address is 0007.b400.0a02 (learnt)
                    Owner ID is acf2.c518.0651
                    Redirection enabled, 599.392 sec remaining (maximum 600 sec)
                    Time to live: 14399.392 sec (maximum 14400 sec)
                    Preemption enabled, min delay 30 sec
                    Active is 10.1.10.2 (primary), weighting 100 (expires in 10.368 sec)
                    Client selection count: 13
<output omitted>
```

The first part of the GLBP output deals with R1’s role as an AVG. The AVG role has not been affected by the configuration we applied above. The highlighted portion shows the impact of the interface tracking and weighting mechanism configurations. The weighting mechanism only affects the forwarder role in GLBP. Notice that R1 is no longer the forwarder for the MAC address 0007.b400.0a01. R1 shows the forwarder roles for both MAC addresses in the listen state.

It is important to note that similar configurations should be applied on R1 for GLBP groups 20 and 99 for consistency of operations. R3 would need to be configured to track the serial interface s0/0/1 and have the
weighting mechanism applied as appropriate. To limit the length and time required to perform this lab, these steps have been omitted.

Activate R1 serial interface s0/0/0 using the no shutdown command.

On R1, shutdown the interface s0/0/0.

```plaintext
R1(config)# int s0/0/0
R1(config-if)# no shut
```

Use the show glbp command to ensure R1 resumed its AVF role.

Step 14: Configure GLBP authentication.

GLBP authentication is important to ensure that no rogue device is allowed join your GLBP group and adversely affect GLBP operations by initiating attacks such as Man-in-the-Middle, etc. GLBP supports two options for authentication: plain text authentication and MD5 authentication. MD5 authentication offers greater security. Using MD5 authentication, a coordinated secret key is used to generate a keyed MD5 hash, which is then included in GLBP packets sent back and forth. A keyed hash of an incoming packet is generated and if the hash within the incoming packet does not match the generated hash the packet is ignored.

Configure the R1 and R3 routers subinterfaces to support MD5 authentication using the following command:

```
glpb <0-1023> Group Number authentication MD5 key-string cisco123
```

```plaintext
R1(config)# interface GigabitEthernet0/1.10
R1(config-subif)# glbp 10 authentication md5 key-string cisco123

R1(config)# interface GigabitEthernet0/1.20
R1(config-subif)# glbp 20 authentication md5 key-string cisco123

R1(config)# interface GigabitEthernet0/1.99
R1(config-subif)# glbp 99 authentication md5 key-string cisco123
```

NOTE: The cisco123 is used as the shared key password in this lab scenario.

When you added the commands for GLBP authentication to the R1 router, a GLBP state change occurred because only one router was configured with authentication. Now move to R3 router and add glbp authentication to each sub-interface using the same command with the respective GLBP group number and the same key-string shown above.

Verify the GLBP operation. Ensure that the R1 is still the AVG and both routers are participating as AVFs for each configured GLBP group. If there is a problem, check the GLBP authentication configuration for errors.

Step 13: End of Lab

Do not save your configurations. The equipment will be reset for the next lab.
Device Configurations:
Below are the final configurations for each switch.

R1:

R1# show run brief | exclude !
Building configuration...

Current configuration : 2573 bytes
version 15.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname R1
boot-start-marker
boot-end-marker
enable secret 5 $1$8IBV$cpN/Zkg6UKXryw2kX6djn/
no aaa new-model
ip cef
no ipv6 cef
redundancy
track 15 interface Serial0/0/0 line-protocol
interface Embedded-Service-Engine0/0
 no ip address
 shutdown
interface GigabitEthernet0/0
 no ip address
 shutdown
duplex auto
speed auto
interface GigabitEthernet0/1
 no ip address
duplex auto
speed auto
interface GigabitEthernet0/1.10
 description Office VLAN 10
 encapsulation dot1Q 10
 ip address 10.1.10.1 255.255.255.0
 glbp 10 ip 10.1.10.254
 glbp 10 priority 150
 glbp 10 preempt
 glbp 10 weighting 110 lower 85 upper 105
 glbp 10 authentication md5 key-string cisco123
 glbp 10 weighting track 15 decrement 30
interface GigabitEthernet0/1.20
 description Server VLAN 20
 encapsulation dot1Q 20
 ip address 10.1.20.1 255.255.255.0
 glbp 20 ip 10.1.20.254
 glbp 20 priority 150
 glbp 20 preempt
 glbp 20 authentication md5 key-string cisco123
interface GigabitEthernet0/1.99
description Management VLAN 99
encapsulation dot1Q 99
ip address 10.1.99.1 255.255.255.0
glbp 99 ip 10.1.99.254
glbp 99 priority 150
glbp 99 preempt
glbp 99 authentication md5 key-string cisco123
interface Serial0/0/0
ip address 10.1.1.1 255.255.255.252
clock rate 2000000
interface Serial0/0/1
no ip address
shutdown
interface Serial0/1/0
no ip address
shutdown
interface Serial0/1/1
no ip address
shutdown
clock rate 125000
router eigrp 1
network 10.0.0.0
ip forward-protocol nd
no ip http server
no ip http secure-server
control-plane
line con 0
logging synchronous
line aux 0
line 2
no activation-character
no exec
transport preferred none
transport output pad telnet rlogin laph-ta mop udptn v120 ssh
stopbits 1
line vty 0 4
password cisco
login
transport input all
scheduler allocate 20000 1000
end

R2:

R1# show run brief | exclude !
Building configuration...

Current configuration : 2573 bytes
version 15.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname R1
boot-start-marker
boot-end-marker
enable secret 5 $1$8IBV$cpN/Zkg6UKXryw2kX6djn/
no aaa new-model
ip cef
no ipv6 cef
redundancy
track 15 interface Serial0/0/0 line-protocol
interface Embedded-Service-Engine0/0
no ip address
shutdown
interface GigabitEthernet0/0
no ip address
shutdown
duplex auto
speed auto
interface GigabitEthernet0/1
no ip address
duplex auto
speed auto
interface GigabitEthernet0/1.10
description Office VLAN 10
encapsulation dot1Q 10
ip address 10.1.10.1 255.255.255.0
glbp 10 ip 10.1.10.254
glbp 10 priority 150
glbp 10 preempt
glbp 10 weighting 110 lower 85 upper 105
glbp 10 authentication md5 key-string cisco123
glbp 10 weighting track 15 decrement 30
interface GigabitEthernet0/1.20
description Server VLAN 20
encapsulation dot1Q 20
ip address 10.1.20.1 255.255.255.0
glbp 20 ip 10.1.20.254
glbp 20 priority 150
glbp 20 preempt
glbp 20 authentication md5 key-string cisco123
interface GigabitEthernet0/1.99
description Management VLAN 99
encapsulation dot1Q 99
ip address 10.1.99.1 255.255.255.0
glbp 99 ip 10.1.99.254
glbp 99 priority 150
glbp 99 preempt
glbp 99 authentication md5 key-string cisco123
interface Serial0/0/0
ip address 10.1.1.1 255.255.255.252
clock rate 2000000
interface Serial0/0/1
no ip address
shutdown
interface Serial0/1/0
no ip address
shutdown
interface Serial0/1/1
no ip address
shutdown
clock rate 125000

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public.
router eigrp 1
 network 10.0.0.0
ip forward-protocol nd
no ip http server
no ip http secure-server
control-plane
line con 0
 logging synchronous
line aux 0
line 2
 no activation-character
 no exec
 transport preferred none
 transport output pad telnet rlogin lapb-ta mop udptn v120 ssh
 stopbits 1
 line vty 0 4
 password cisco
 login
 transport input all
 scheduler allocate 20000 1000
end

R3:

R3# show run brief | exclude !
Building configuration...

Current configuration : 2398 bytes
 version 15.3
 service timestamps debug datetime msec
 service timestamps log datetime msec
 no service password-encryption
 hostname R3
 boot-start-marker
 boot-end-marker
 enable secret 5 1K2en$bbda0.oigRThi/mmgC7go1
 no aaa new-model
 ip cef
 no ipv6 cef
 redundancy
 interface Embedded-Service-Engine0/0
 no ip address
 shutdown
 interface GigabitEthernet0/0
 no ip address
 shutdown
duplex auto
 speed auto
 interface GigabitEthernet0/1
 no ip address
duplex auto
 speed auto
 interface GigabitEthernet0/1.10
description Office VLAN 10
 encapsulation dot1Q 10
 ip address 10.1.10.2 255.255.255.0
glbp 10 ip 10.1.10.254
glbp 10 preempt
glbp 10 authentication md5 key-string cisco123
interface GigabitEthernet0/1.20
description Server VLAN 20
encapsulation dot1Q 20
ip address 10.1.20.2 255.255.255.0
glbp 20 ip 10.1.20.254
glbp 20 preempt
glbp 20 authentication md5 key-string cisco123
interface GigabitEthernet0/1.99
description Management VLAN 99
encapsulation dot1Q 99
ip address 10.1.99.2 255.255.255.0
glbp 99 ip 10.1.99.254
glbp 99 preempt
glbp 99 authentication md5 key-string cisco123
interface Serial0/0/0
no ip address
shutdown
clock rate 2000000
interface Serial0/0/1
ip address 10.1.1.6 255.255.255.252
interface Serial0/1/0
no ip address
shutdown
clock rate 2000000
interface Serial0/1/1
no ip address
shutdown
clock rate 2000000
router eigrp 1
 network 10.0.0.0
ip forward-protocol nd
no ip http server
no ip http secure-server
control-plane
line con 0
 logging synchronous
line aux 0
line 2
 no activation-character
 no exec
 transport preferred none
 transport output pad
telnet rlogin lapb-ta mop udptn vl20 ssh
stopbits 1
line vty 0 4
 password cisco
 login
 transport input all
scheduler allocate 20000 1000
end

dls1:
 DLS1# show run | exclude !
 Building configuration...
Current configuration : 2432 bytes
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname DLS1
boot-start-marker
boot-end-marker
enable secret 5 1WUB8$FEnk/sOccbWN/mB.QBZ.ml
no aaa new-model
system mtu routing 1500
no ip domain-lookup
ip domain-name CCNP.NET
spanning-tree mode pvst
spanning-tree extend system-id
vlan internal allocation policy ascending
interface Port-channel1
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface Port-channel10
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/1
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 1 mode active
interface FastEthernet0/2
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 1 mode active
interface FastEthernet0/3
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 10 mode active
interface FastEthernet0/4
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 10 mode active
interface FastEthernet0/5
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/6
 switchport access vlan 10
 switchport mode access
 spanning-tree portfast
interface FastEthernet0/7
 shutdown
interface FastEthernet0/8
 shutdown
interface FastEthernet0/9
 shutdown
interface FastEthernet0/10
 shutdown
interface FastEthernet0/11
 shutdown
interface FastEthernet0/12
 shutdown
interface FastEthernet0/13
 shutdown
interface FastEthernet0/14
 shutdown
interface FastEthernet0/15
 shutdown
interface FastEthernet0/16
 shutdown
interface FastEthernet0/17
 shutdown
interface FastEthernet0/18
 shutdown
interface FastEthernet0/19
 shutdown
interface FastEthernet0/20
 shutdown
interface FastEthernet0/21
 shutdown
interface FastEthernet0/22
 shutdown
interface FastEthernet0/23
 shutdown
interface FastEthernet0/24
 shutdown
interface GigabitEthernet0/1
 shutdown
interface GigabitEthernet0/2
 shutdown
interface Vlan1
 no ip address
interface Vlan99
 ip address 10.1.99.3 255.255.255.0
 ip http server
 ip http secure-server
 line con 0
 exec-timeout 0 0
 logging synchronous
 line vty 0 4
 password cisco
 login
 line vty 5 15
 password cisco
 login
end

DLS2:

DLS2# show run | exclude !
Building configuration...

Current configuration : 2442 bytes
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname DLS2
boot-start-marker
boot-end-marker
enable secret 5 1o4vW$5HBXnwUB08E9pBv10yHI2.
no aaa new-model
system mtu routing 1500
no ip domain-lookup
ip domain-name CCNP.NET
spanning-tree mode pvst
spanning-tree extend system-id
vlan internal allocation policy ascending
interface Port-channel12
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface Port-channel10
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/1
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 2 mode active
interface FastEthernet0/2
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 2 mode active
interface FastEthernet0/3
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 10 mode active
interface FastEthernet0/4
 switchport trunk encapsulation dot1q
 switchport mode trunk
 channel-group 10 mode active
interface FastEthernet0/5
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/6
 shutdown
interface FastEthernet0/7
 shutdown
interface FastEthernet0/8
 shutdown
interface FastEthernet0/9
 shutdown
interface FastEthernet0/10
 shutdown
interface FastEthernet0/11
 shutdown
interface FastEthernet0/12
 shutdown
interface FastEthernet0/13
 shutdown
interface FastEthernet0/14
 shutdown
interface FastEthernet0/15
 shutdown
shutdown
interface FastEthernet0/16
shutdown
interface FastEthernet0/17
shutdown
interface FastEthernet0/18
switchport access vlan 10
switchport mode access
spanning-tree portfast
interface FastEthernet0/19
shutdown
interface FastEthernet0/20
shutdown
interface FastEthernet0/21
shutdown
interface FastEthernet0/22
shutdown
interface FastEthernet0/23
shutdown
interface FastEthernet0/24
shutdown
interface GigabitEthernet0/1
shutdown
interface GigabitEthernet0/2
shutdown
interface Vlan1
no ip address
shutdown
interface Vlan99
ip address 10.1.99.3 255.255.255.0
ip http server
ip http secure-server
line con 0
 exec-timeout 0 0
 logging synchronous
line vty 0 4
 password cisco
login
line vty 5 15
 password cisco
login
end

ALS1:

ALS1# show run | exclude !
Building configuration...

Current configuration : 2119 bytes
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname ALS1
boot-start-marker
boot-end-marker
enable secret 5 1tKFf$wHvcVUvN6dKrJumt.Qy3a.
no aaa new-model
system mtu routing 1500
no ip domain-lookup
ip domain-name CCNP.NET
spanning-tree mode pvst
spanning-tree extend system-id
vlan internal allocation policy ascending
interface Port-channel11
 switchport mode trunk
interface Port-channel12
 switchport mode trunk
interface FastEthernet0/1
 switchport mode trunk
 channel-group 1 mode active
interface FastEthernet0/2
 switchport mode trunk
 channel-group 1 mode active
interface FastEthernet0/3
 switchport mode trunk
 channel-group 2 mode active
interface FastEthernet0/4
 switchport mode trunk
 channel-group 2 mode active
interface FastEthernet0/5
 shutdown
interface FastEthernet0/6
 shutdown
interface FastEthernet0/7
 shutdown
interface FastEthernet0/8
 shutdown
interface FastEthernet0/9
 shutdown
interface FastEthernet0/10
 shutdown
interface FastEthernet0/11
 shutdown
interface FastEthernet0/12
 shutdown
interface FastEthernet0/13
 shutdown
interface FastEthernet0/14
 shutdown
interface FastEthernet0/15
 shutdown
interface FastEthernet0/16
 shutdown
interface FastEthernet0/17
 shutdown
interface FastEthernet0/18
 switchport access vlan 10
 switchport mode access
 spanning-tree portfast
interface FastEthernet0/19
 shutdown
interface FastEthernet0/20
 shutdown
interface FastEthernet0/21
 shutdown
interface FastEthernet0/22
 shutdown
interface FastEthernet0/23
 shutdown
interface FastEthernet0/24
 shutdown
interface GigabitEthernet0/1
 shutdown
interface GigabitEthernet0/2
 shutdown
interface Vlan1
 no ip address
interface Vlan99
 ip address 10.1.99.5 255.255.255.0
 ip http server
 ip http secure-server
 line con 0
 exec-timeout 0 0
 logging synchronous
 line vty 0 4
 password cisco
 login
 line vty 5 15
 password cisco
 login
end