Chapter 5

Nonopioid (Nonnarcotic) Analgesics

Chapter 5 Outline

- Nonopioid (Nonnarcotic) Analgesics
 - Pain
 - Classification
 - Salicylates
 - Nonsteroidal antiinflammatory drugs
 - Acetaminophen
 - Drugs used to treat gout

Nonopioid (Nonnarcotic) Analgesics

- Haveles (p. 49)
 - Pain control is of great importance in dental practice
 - Pain is often the issue that brings a patient to the dental office
 - Conversely, pain may keep the patient from seeking dental care
 - The dental health care provider must be able to recognize and evaluate a patient's need for medication

Pain

- Haveles (p. 49)
 - Pain is the means by which the body is made urgently aware of tissue damage
 - Pain is a diagnostic symptom of an underlying pathologic condition
 - The two components of pain are perception and reaction
 - Perception: the physical component
 - Reaction: psychologic component

Classification

- Haveles (pp. 50) (Fig. 5-2)
 - Analgesic agents can be divided into two groups
 - Nonopioid, nonnarcotic, peripheral, mild, and antipyretic analgesics
 - Opioid, narcotic, central, and strong analgesics

cont’d…
Classification

- An important difference between nonopioid and opioid analgesics is the site of action
 - Nonopioid analgesics act primarily at peripheral nerve endings, although their antipyretic effect is mediated centrally
 - Opioids act primarily in the central nervous system (CNS)
- Another difference is the mechanism of action
 - Nonopioid analgesics inhibit prostaglandin synthesis
 - Opioids affect the response to pain by depressing the CNS

Salicylates

- Acetylsalicylic acid
 - Chemistry
 - Mechanism of action
 - Pharmacokinetics
 - Pharmacologic effects
 - Adverse reactions
 - Toxicity
 - Drug interactions
 - Uses
 - Dose and preparations
- Other salicylates
 - Difunisal

Chemistry

- Acetylsalicylic acid (ASA, aspirin) is broken down into acetic acid and salicylic acid
 - Acetic acid imparts the vinegar odor to a bottle of aspirin

Mechanism of Action

- Aspirin’s analgesic, antipyretic, antiinflammatory, and antiplatelet effects are related to the ability to inhibit prostaglandin synthesis
 - Aspirin inhibits cyclooxygenase (COX) to block production of prostaglandins
- Prostaglandins can sensitize pain receptors to substances such as bradykinin
 - A reduction in prostaglandins results in a reduction in pain
Pharmacokinetics

- Haveles (pp. 51-52)
 - Aspirin is rapidly and almost completely absorbed from the stomach and small intestine
 - Widely distributed into most body tissues and fluids
 - The half-life varies with the dose because a constant amount rather than constant percentage is metabolized per hour
 - This type of metabolism is called zero-order kinetics

Pharmacologic Effects

- Haveles (pp. 52-53) (Figs. 5-6, 5-7, 5-8, 5-9)
 - Analgesic: relieves mild to moderate pain
 - Antipyretic: reduces fever by inhibition of prostaglandin synthesis in hypothalamus; no effect on normal body temperature
 - Antiinflammatory: causes decreased erythema and swelling
 - Uricosuric: large doses produce uricosuric effect, small doses produce uric acid retention
 - Antiplatelet: irreversibly binds to platelets, depending on dose, can inhibit either prostacyclin (inhibit aggregation) or thromboxane A₂ (stimulates aggregation)

Adverse Reactions

- Haveles (pp. 53-54) (Table 5-1)
 - Gastrointestinal effects: may be simple dyspepsia, nausea, vomiting, or gastric bleeding
 - Bleeding: interferes with clotting mechanism by reducing platelet adhesiveness
 - Reye syndrome: in children and adolescents with either chickenpox or influenza, aspirin has been associated with Reye syndrome

- Hepatic and renal effects: rarely, aspirin can produce hepatotoxicity
 - Renal papillary necrosis and interstitial nephritis is associated with use of certain analgesics
 - Pregnancy and nursing: human studies have found only a slight positive correlation between chronic aspirin ingestion and congenital abnormalities
 - With abuse, increased risk of stillbirth, neonatal death, and decreased birth weight
 - Hypersensitivity: incidence of true allergy less than 1%, asthmatics are more likely hypersensitive
 - Aspirin hypersensitivity triad—aspirin hypersensitivity, asthma, and nasal polyps—often occur together

Toxicity

- Haveles (p. 54)
 - An overdose can produce harmful effects and even death
 - Symptoms
 - At a certain level, salicylism occurs, characterized by tinnitus, headache, nausea, vomiting, dizziness, and dimness of vision
 - At higher levels, stimulation of respiration leads to hyperventilation, producing respiratory alkalosis
 - The cause of death is usually acidosis and electrolyte imbalance

- Prevention
 - Children are the primary victims of accidental poisoning
 - Education of parents regarding potential for poisoning and proper storage and childproof containers have reduced accidental poisonings in children
Toxicity

- haveles (pp. 54-55) (Box 5-3)
 - Treatment
 - Involves removing excess drug in the stomach by inducing emesis or administering activated charcoal
 - Other symptoms are treated symptomatically

Drug Interactions

- haveles (pp. 54-55) (Table 5-1)
 - Warfarin: an oral anticoagulant highly protein bound to plasma protein binding sites; aspirin can displace warfarin from binding sites increasing its anticoagulant effect
 - Probenecid: aspirin interferes with probenecid’s uricosuric effect, can cause an acute attack of gout

Drug Interactions

- Methotrexate (MTX): an antineoplastic drug used to treat certain cancers and autoimmune diseases; aspirin can displace it from protein-binding sites and interfere with clearance causing increased serum concentration and MTX toxicity
- Sulfonamide: higher doses of salicylates may produce an hypoglycemic effect
- Antihypertensives: aspirin reduces the effect of many antihypertensives including angiotensin-converting enzyme (ACE) inhibitors, β-blockers, and thiazide and loop diuretics

Uses

- haveles (p. 55)
 - Analgesia for mild to moderate pain
 - Antipyretic effect useful to control fever but should be avoided in children (Reye syndrome)
 - Antiinflammatory action used to treat inflammatory conditions such as rheumatic fever and arthritis
 - Because of effect on platelet aggregation, used to prevent unwanted clotting

Dose and Preparations

- haveles (pp. 55-56, 62) (Tables 5-9, 5-2)
 - Usual adult dose for treatment of pain or fever is 325-650 mg every 4 hours
 - For prevention of myocardial infarction, the dose is 75-325 mg/day
 - Children’s dose is 10-15 mg/kg every 4-6 hours

Dose and Preparations

- haveles (pp. 55)
 - Regular aspirin: 325-mg tablet and 81-mg children’s tablet
 - (Bayer, Empirin, St. Joseph, Bayer; low dose)
 - Enteric coated aspirin: a coating that dissolves in the intestine rather than the stomach
 - (Ecotrin, Ecotrin; low dose)
Dose and Preparations

- **Combinations**
 - With buffer: claimed to produce fewer gastrointestinal (GI) effects (Bufferin, Ascriptin)
 - With another analgesic: combined with an opioid analgesic or acetaminophen
 - With sedatives: if anxiety is a substantial component of pain
 - With caffeine: caffeine potentiates the analgesic effect of aspirin and other analgesics (Excedrin, Anacin, Fiorinal)

Other Salicylates

- **Haveles (pp. 55-56)**
 - Sodium, choline, magnesium salicylate and salicylamide, and salsalate
 - Claim to have fewer GI side effects
 - Two advantages of these agents are that they are thought to have no effect on platelets and no cross-hypersensitivity with aspirin
 - Magnesium is contraindicated in renal disease, sodium is contraindicated in cardiovascular disease

diflunisal (Dolobid)

- **Haveles (p. 56)**
 - A salicylate classified as a NSAID
 - Can be administered before a dental procedure to delay the onset of postsurgical pain
 - Antipyretic effect is not clinically useful

Nonsteroidal Antiinflammatory Drugs

- **Haveles (p. 56)**
 - A rapidly growing group with important application in dentistry
 - Mechanism of action and many of their pharmacologic effects and adverse reactions resemble aspirin
 - Many authors agree they are the most useful drug group for treatment of dental pain
 - Currently make up only a small percentage of analgesic prescriptions

Chemical Classification

- **Haveles (p. 56)**
 - Divided into several chemical derivatives: propionic acids, acetic acids, fenamates, pyrazolones, oxicams, and others
Examples of Nonselective Nonsteroidal Antiinflammatory Drugs

- Propionic acid derivatives
 - ibuprofen (Motrin, Advil)
 - flurbiprofen (Ansaid-PO, Ocu fen-ophth)
 - fenoprofen (Nalfon)
 - naproxen (Naprosyn)
 - naproxen sodium (Anaprox)
 - ketoprofen (Orudis)
 - ketoprofen (Oruvail)
 - oxaprozin (Daypro)

- Acetic acid derivatives
 - indomethacin (Indocin)
 - indomethacin SR (Indocin SR)
 - sulindac (Clinoril)
 - tolmetin (Tolectin)
 - diclofenac (Cataflam)
 - diclofenac (Voltaren)
 - etodolac (Lodine)
 - etodolac (Lodine-XL)
 - ketorolac (Toradol)

- Nonacidic agent
 - nabumetone (Relafen)

- Fenamic acid derivatives
 - meclofenamate (Meclomen)
 - mefenamic acid (Ponstel)

- Salicylates
 - diflunisal (Dolobid)

- Oxicams
 - piroxicam (Feldene)
 - meloxicam (Mobic)

Mechanism of Action

- Similar to aspirin, NSAIDs inhibit the enzyme COX (prostaglandin synthase)
- Results in a reduction in the formation of prostaglandin precursors and thromboxanes from arachidonic acid

Pharmacokinetics

- Most NSAIDs peak in about 1-2 hours
 - Food reduces the rate but not the extent of absorption
- No effect on absorption of NSAIDs with oral antacids, except for diflunisal
- Metabolized in liver, excreted in kidneys

Pharmacologic Effects

- Analgesic, antipyretic, and antiinflammatory actions of NSAIDs result from same mechanism as aspirin inhibition of prostaglandin synthesis by inhibiting COX
- Useful for treating dysmenorrhea because an excess of prostaglandins in the uterine wall produces painful contractions
Adverse Reactions

- Haveles (p. 58)
 - GI effects: gastric irritation, pain, and bleeding problems leading to tarry stools can occur with all NSAIDs
 - NSAIDs can interfere with normal protective mechanisms in the stomach
 - CNS effects: dose-dependent side effects include sedation, dizziness, confusion, mental depression, headache, vertigo, and convulsions

- Blood clotting: reversibly inhibit platelet aggregation
 - In contrast to aspirin, the effect remains only as long as the drug is present in the blood
 - Renal effects: renal failure, cystitis, and increased incidence of urinary tract infections
 - Other effects: muscle weakness, ringing ears, hepatitis, hematologic problems, and blurred vision

- Oral effects: ulcerative stomatitis, gingival ulcerations, dry mouth
- Hypersensitivity reactions: can induce a wide range, including hives or itching, angioneurotic edema, chills and fever, Stevens-Johnson syndrome, exfoliative dermatitis, and epidermal necrolysis
- Pregnancy and nursing considerations: given late in pregnancy can prolong gestation, delay parturition, and produce dystocia—premature closing of ductus arteriosus

Contraindications and Cautions

- Haveles (pp. 58-59) (Box 5-4) (Table 5-5)
- Related to their adverse reactions
 - Caution for patients with asthma, cardiovascular or renal diseases with fluid retention, coagulopathies, peptic ulcer, and ulcerative colitis
 - Higher risk for adverse reactions for those with renal function impairment or history of previous hypersensitivity to aspirin or other NSAIDs and geriatric patients

Drug Interactions

- Haveles (p. 58) (Table 5-4)
- Lithium: may increase lithium toxicity in patients taking lithium for bipolar affective disorders
- Digoxin: may increase effect of digoxin used for congestive heart failure
- May decrease effect of antihypertensives, such as diuretics, ACE inhibitors, and β-blockers
- Can increase toxicity of cyclosporin and MTX

Therapeutic Uses

- Haveles (pp. 58-59) (Fig. 5-9)
- Medical: uses include osteoarthritis, rheumatoid arthritis, gouty arthritis, fever, dysmenorrhea, and pain
 - Accepted unlabeled indications include bursitis and tendonitis
- Dental: many studies find NSAIDs are equivalent in analgesic efficacy to opioid analgesics in many clinical situations
Specific Nonsteroidal Antiinflammatory Drugs

- Haveles (pp. 60-61)
 - Ibuprofen
 - Naproxen and naproxen sodium
 - Other NSAIDs
 - COX II-specific agents

Ibuprofen (Advil, Motrin)

- Haveles (pp. 59-60) (Fig. 5-9)
 - The oldest member of the NSAIDs
 - Rapidly absorbed orally, food decreases rate but not extent of absorption
 - The drug of choice for dental pain when an NSAID is indicated
 - Usual dose is 400-800 mg every 4-6 hours

naproxen and naproxen sodium (Naprosyn, Anaprox)

- Haveles (pp. 57, 60) (Fig. 5-10; Table 5-3)
 - Propionic acid NSAIDs with longer half-lives than ibuprofen
 - Can be administered on an 8- to 12-hour schedule
 - Given with a loading dose

Other Nonsteroidal Antiinflammatory Drugs

- Haveles (pp. 57, 60) (Table 5-3)
 - Fenoprofen, ketorolac, or diflunisal may be used for patients who do not respond to ibuprofen or naproxen
 - ketorolac (Toradol) is a newer NSAID
 - Oral ketorolac is indicated only as continuation therapy to intravenous or intramuscular ketorolac

Cyclooxygenase II-Specific Agents

- Haveles (pp. 60-61) (Table 5-6)
 - Current NSAIDs inhibit both COX I and COX II
 - COX I is an enzyme responsible for adverse reactions of NSAIDs
 - COX II is synthesized only when inflammation occurs
 - COX II-specific inhibitors, because they inhibit COX II (good) more than COX I (bad), should have fewer adverse reactions than the former NSAIDs
 - Clinically they are equivalent to nonselective NSAIDs

Cyclooxygenase II-Specific Agents

- rofecoxib (Vioxx) and valdecoxib (Bextra) were removed from the market as a result of a high incidence of cardiovascular events (heart attack) associated with these drugs
 - The theory is they may suppress prostacyclin (PGI2), which is synthesized by vascular endothelium and smooth muscle
 - Inhibition of the COX II enzyme may also inhibit the function of endothelial cells

cont'd…
Acetaminophen (Tylenol)

- Haveles (p. 61)
- Acetaminophen is the only member of the p-aminophenols currently available for clinical use
 - Used as an analgesic and antipyretic in children and in adults when aspirin is contraindicated

Pharmacokinetics

- Haveles (p. 61)
 - Rapidly and completely absorbed from the GI tract; peak plasma level in 1-3 hours
 - Metabolized by liver microsomal enzymes
 - With large doses, an intermediate metabolite is produced that is thought to be hepatotoxic and possibly nephrotoxic

Pharmacologic Effects

- Haveles (p. 61)
 - Analgesic and antipyretic effects are about the same potency as aspirin
 - Acetaminophen does not possess any clinically significant antiinflammatory effect
 - Unlike aspirin, acetaminophen does not produce gastric bleeding or affect platelet adhesiveness or uric acid excretion

Adverse Reactions

- Haveles (pp. 61-62) (Table 5-7)
 - Hepatic effects: the toxic metabolite that contributes to hepatic necrosis is N-acetyl-p-benzoquinone imine
 - Hepatic necrosis may occur after ingestion of a single dose of 20-25 grams
 - Patients with hepatic disease should avoid acetaminophen
 - Alcoholics or patients who ingest three or more alcoholic beverages a day should avoid acetaminophen

Treatment of Toxicity

- Haveles (p. 62)
 - Should begin with gastric lavage if a drug has recently been ingested
 - Administration of activated charcoal and magnesium or sodium sulfate solution should follow
Nephrotoxicity

- Nephrotoxicity has been associated with long-term consumption of acetaminophen
 - Primary lesion appears to be papillary necrosis with secondary interstitial nephritis
 - Concurrent chronic use of acetaminophen and aspirin or NSAIDs increases risk of analgesic nephropathy, renal papillary necrosis, end-stage renal disease, and cancer of the kidney or urinary bladder

Drug Interactions

- Acetaminophen is remarkably free of drug interactions at its usual therapeutic doses
 - Hepatotoxicity can be potentiated by administration of agents that induce hepatic microsomal enzymes

Uses

- Acetaminophen is used as an analgesic and antipyretic
 - Especially useful in patients who have aspirin hypersensitivity or in whom aspirin-induced gastric irritation would be a problem
 - Used as an analgesic instead of aspirin for young children

Dose and Preparations

- Available in many combinations and elixirs
 - Usual adult dose is 325-650 mg every 4-6 hours or 1000 mg three to four times a day
 - Not more than 4 grams in 24 hours should be ingested by adults
 - Various elixirs, drops, and chewable tablets are available for children
 - The elixir is 120 mg/5 ml or 160 mg/5 ml
 - Drops contain 60 mg/0.6 ml

Drugs Used to Treat Gout

- Both NSAIDs and colchicine are used to treat acute attacks of gout
 - Probenecid and allopurinol are available to prevent gout
colchicine

- Haveles (p. 63)
 - For treatment of an acute attack of gout
 - Appears to inhibit the chemotactic property of leukocytosis and interfere with the inflammatory response to urate crystals

allopurinol

- Haveles (p. 63)
 - Inhibits the synthesis or uric acid
 - Used to prevent excess uric acid from forming
 - Used in patients receiving either chemotherapy or irradiation for malignancy
 - The death of many cells causes release of large amounts of uric acid precursors
 - Side effects include hepatotoxicity of a hypersensitivity type

probenecid (Benemid)

- Haveles (pp. 53, 63) (Fig. 5-7)
 - A uricosuric agent
 - Causes increased excretion of uric acid
 - Blocks the tubular reabsorption of filtered urate, prevents new tophi and mobilizes those present
 - GI side effects and hypersensitivity may occur
 - Headaches and sore gingiva have also been reported
 - Increases the level of the NSAIDs and penicillin