1) Given \(f(x) = x^3 - x^2 \), find \(\frac{f(x+h) - f(x)}{h} \), where \(h \neq 0 \).

2) Given \(g(x) = \frac{1}{x+3} \), find \(\frac{g(x) - g(a)}{x-a} \), where \(x \neq a \).

3) Simplify \(\frac{1}{2}(2x+4)^{-\frac{1}{2}}(2)(3x^2 + 2)^3 + (2x+4)^{\frac{1}{2}}(3)(3x^2 + 2)^2(6x) \) completely.

4) Graph \(y = \ln(x+2) - 4 \). State the domain, the x- and y-intercepts, and any asymptotes.

5) Graph \(f(x) = (x+2)(x-3)^2(x+4)^3 \). State the x- and y-intercepts.

6) Solve \(\frac{2x^2 - 8}{x^2 - 16} \geq 0 \)

7) Graph \(f(x) = \frac{2x^2 + 10x + 12}{x^2 - 1} \). State the domain, the x- and y-intercepts, any asymptotes, and any holes.

8) Solve \(\log_2(x + 3) + \log_2(x - 3) = 4 \)

9) There are 10 bacteria in a culture now. In 5 hours, there will be 100 bacteria in the culture. Assuming that the bacteria population follows the law of exponential growth:
 a) Find the exponential growth function that models bacteria population \(t \) hours from now.
 b) After how many hours will there be 1,000,000 bacteria in the culture?

10) If \(\csc \theta = \frac{5}{3} \), where \(\theta \) is in quadrant II, find the exact value of the following:
 a) \(\sin \theta \)
 b) \(\cos \theta \)
 c) \(\tan \theta \)
11) Find the exact value of the following:
 a) \(\cos 270° \)
 b) \(\sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \)
 c) \(\tan 135° \)
 d) \(\csc \left(\frac{5\pi}{3} \right) \)

12) Graph \(y = 3\sin(2x - \pi) \) over one period. State the amplitude, the period, the phase shift, and the x- and y-intercepts.

13) Find all of the solutions of \(\sin(3x - \frac{\pi}{2}) = \frac{-\sqrt{3}}{2} \)

14) Find all of the solutions of \(\cos^2 x - 3\cos x + 2 = 0 \)

15) Find the equation of the following lines in slope intercept form:
 a) passing through \((-1, 2)\) and \((3, -5)\)
 b) passing through \((-2, -4)\) and parallel to \(4x + 5y = 8\)
 c) passing through \((3, 0)\) and perpendicular to \(4x = 4y - 25\)

16) Graph \(y = -2e^{x-1} + 4 \). State any intercepts and asymptotes.