Kinetic Energy The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is very close to the speed of light, is
\[K = \frac{1}{2}mv^2 \]
(7-1)

Work Work W is energy transferred to or from an object via a force acting on the object. Energy transferred to the object is positive work, and from the object, negative work.

Work Done by a Constant Force The work done on a particle by a constant force F during displacement d is
\[W = Fd \cos \phi = F \cdot d \]
(work, constant force),
(7-7, 7-8)
in which ϕ is the angle between the directions of F and d. Only the component of F that is along the displacement d can do work on the object. When two or more forces act on an object, their net work is the sum of the individual works done by the forces, which is also equal to the work that would be done on the object by the net force F_{net} of those forces.

Work and Kinetic Energy For a particle, a change ΔK in the kinetic energy equals the net work W done on the particle:
\[\Delta K = K_f - K_i = W \]
(work–kinetic energy theorem),
(7-10)
in which K_i is the initial kinetic energy of the particle and K_f is the kinetic energy after the work is done. Equation 7-10 rearranged gives us
\[K_f = K_i + W. \]
(7-11)

Work Done by the Gravitational Force The work W_g done by the gravitational force F_g on a particle-like object of mass m as the object moves through a displacement d is given by
\[W_g = mgd \cos \phi, \]
(7-12)
in which ϕ is the angle between F_g and d.

Work Done in Lifting and Lowering an Object The work W_d done by an applied force as a particle-like object is either lifted or lowered is related to the work W_g done by the gravitational force and the change ΔK in the object’s kinetic energy by
\[\Delta K = K_f - K_i = W_g + W_d \]
(7-15)
If $K_f = K_i$, then Eq. 7-15 reduces to
\[W_d = -W_g, \]
(7-16)
which tells us that the applied force transfers as much energy to the object as the gravitational force transfers from it.

Spring Force The force F_s from a spring is
\[F_s = -k \overrightarrow{d} \]
(Hooke’s law),
(7-20)
where \overrightarrow{d} is the displacement of the spring’s free end from its position when the spring is in its relaxed state (neither compressed nor extended), and k is the spring constant (a measure of the spring’s stiffness). If an x axis lies along the spring, with the origin at the location of the spring’s free end when the spring is in its relaxed state, Eq. 7-20 can be written as
\[F_s = -kx \]
(Hooke’s law).
(7-21)
A spring force is thus a variable force: It varies with the displacement of the spring’s free end.

Work Done by a Spring Force If an object is attached to the spring’s free end, the work W_s done on the object by the spring force when the object is moved from an initial position x_i to a final position x_f is
\[W_s = \frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2. \]
(7-25)
If $x_i = 0$ and $x_f = x$, then Eq. 7-25 becomes
\[W_s = -\frac{1}{2}kx^2. \]
(7-26)

Work Done by a Variable Force When the force F on a particle-like object depends on the position of the object, the work done by F on the object while the object moves from an initial position r_i with coordinates (x_i, y_i, z_i) to a final position r_f with coordinates (x_f, y_f, z_f) must be found by integrating the force. If we assume that component F_x may depend on x but not on y or z, component F_y may depend on y but not on x or z, and component F_z may depend on z but not on x or y, then the work is
\[W = \int_{r_i}^{r_f} F_x \, dx + \int_{r_i}^{r_f} F_y \, dy + \int_{r_i}^{r_f} F_z \, dz. \]
(7-36)
If F has only an x component, then Eq. 7-36 reduces to
\[W = \int_{r_i}^{r_f} F(x) \, dx. \]
(7-32)

Power The power due to a force is the rate at which that force does work on an object. If the force does work W during a time interval Δt, the average power due to the force over that time interval is
\[P_{avg} = \frac{W}{\Delta t}. \]
(7-42)
Instantaneous power is the instantaneous rate of doing work:
\[P = \frac{dW}{dt}. \]
(7-43)
For a force \overrightarrow{F} at an angle ϕ to the direction of travel of the instantaneous velocity \overrightarrow{v}, the instantaneous power is
\[P = Fv \cos \phi = \overrightarrow{F} \cdot \overrightarrow{v}. \]
(7-47, 7-48)

Questions

1. Rank the following velocities according to the kinetic energy a particle will have with each velocity, greatest first: (a) $\overrightarrow{v} = 4\overrightarrow{i} + 3\overrightarrow{j}$, (b) $\overrightarrow{v} = -4\overrightarrow{i} + 3\overrightarrow{j}$, (c) $\overrightarrow{v} = -3\overrightarrow{i} + 4\overrightarrow{j}$, (d) $\overrightarrow{v} = 3\overrightarrow{i} - 4\overrightarrow{j}$, (e) $\overrightarrow{v} = 5\overrightarrow{i}$, and (f) $\overrightarrow{v} = 5$ m/s at 30° to the horizontal.

2. Figure 7-15a shows two horizontal forces that act on a block that is sliding to the right across a frictionless floor. Figure 7-15b shows three plots of the block’s kinetic energy K versus time t.

Fig. 7-15

Question 2.
158 CHAPTER 7 KINETIC ENERGY AND WORK

Which of the plots best corresponds to the following three situations: (a) \(F_1 = F_2 \), (b) \(F_1 > F_2 \), (c) \(F_1 < F_2 \)?

3 Is positive or negative work done by a constant force \(\vec{F} \) on a particle during a straight-line displacement \(\vec{d} \) if (a) the angle between \(\vec{F} \) and \(\vec{d} \) is 30°; (b) the angle is 100°; (c) \(\vec{F} = 2 \vec{i} - 3 \vec{j} \) and \(\vec{d} = -4 \vec{i} \)?

4 In three situations, a briefly applied horizontal force changes the velocity of a hockey puck that slides over frictionless ice. The overhead views of Fig. 7-16 indicate, for each situation, the puck’s initial speed \(v_i \), its final speed \(v_f \), and the directions of the corresponding velocity vectors. Rank the situations according to the work done on the puck by the applied force, most positive first and most negative last.

![Figure 7-17](image)

Fig. 7-17 Question 5.

5 Figure 7-17 shows four graphs (drawn to the same scale) of the \(x \) component \(F_x \) of a variable force \(\vec{F} \) (directed along an \(x \) axis) versus the position \(x \) of a particle on which the force acts. Rank the graphs according to the work done by the force on the particle from \(x = 0 \) to \(x = x_1 \), from most positive work first to most negative work last.

![Figure 7-18](image)

Fig. 7-18 Question 6.

6 Figure 7-18 gives the \(x \) component \(F_x \) of a force that can act on a particle. If the particle begins at rest at \(x = 0 \), what is its coordinate when it has (a) its greatest kinetic energy, (b) its greatest speed, and (c) zero speed? (d) What is the particle’s direction of travel after it reaches \(x = 6 \) m?

7 In Fig. 7-19, a greased pig has a choice of three frictionless slides along which to slide to the ground. Rank the slides according to how much work the gravitational force does on the pig during the descent, greatest first.

![Figure 7-19](image)

8 Figure 7-20a shows four situations in which a horizontal force acts on the same block, which is initially at rest. The force magnitudes are \(F_1 = F_2 = 2F_3 = 2F_4 \). The horizontal component \(v_x \) of the block’s velocity is shown in Fig. 7-20b for the four situations. (a) Which plot in Fig. 7-20b best corresponds to which force in Fig. 7-20a? (b) Which plot in Fig. 7-20c (for kinetic energy \(K \) versus time \(t \)) best corresponds to which plot in Fig. 7-20b?

![Figure 7-20](image)

Fig. 7-20 Question 8.

9 Spring \(A \) is stiffer than spring \(B \) \((k_A > k_B)\). The spring force of which spring does more work if the springs are compressed (a) the same distance and (b) by the same applied force?

10 A glob of slime is launched or dropped from the edge of a cliff. Which of the graphs in Fig. 7-21 could possibly show how the kinetic energy of the glob changes during its flight?

![Figure 7-21](image)

Fig. 7-21 Question 10.
sec. 7-3 Kinetic Energy

1 SSM A proton (mass \(m = 1.67 \times 10^{-27} \) kg) is being accelerated along a straight line at \(3.6 \times 10^{15} \) m/s² in a machine. If the proton has an initial speed of \(2.4 \times 10^7 \) m/s and travels 3.5 cm, what then is (a) its speed and (b) the increase in its kinetic energy?

2 If a Saturn V rocket with an Apollo spacecraft attached had a combined mass of \(2.9 \times 10^6 \) kg and reached a speed of 11.2 km/s, how much kinetic energy would it then have?

3 On August 10, 1972, a large meteorite skipped across the atmosphere above the western United States and western Canada, much like a stone skipped across water. The accompanying fireball was so bright that it could be seen in the daytime sky and was brighter than the usual meteorite trail. The meteorite’s mass was about \(4 \times 10^6 \) kg; its speed was about 15 km/s. Had it entered the atmosphere vertically, it would have hit Earth’s surface with about the same speed. (a) Calculate the meteorite’s loss of kinetic energy (in joules) that would have been associated with the vertical impact. (b) Express the energy as a multiple of the explosive energy of 1 megaton of TNT, which is \(4.2 \times 10^{15} \) J. (c) The energy associated with the atomic bomb explosion over Hiroshima was equivalent to 13 kilotons of TNT. To how many Hiroshima bombs would the meteorite impact have been equivalent?

4 A bead with mass \(1.8 \times 10^{-2} \) kg is moving along a wire in the positive direction of an \(x \) axis. Beginning at time \(t = 0 \), when the bead passes through \(x = 0 \) with speed 12 m/s, a constant force acts on the bead. Figure 7-22 indicates the bead’s position at these four times: \(t_0 = 0 \), \(t_1 = 1.0 \) s, \(t_2 = 2.0 \) s, and \(t_3 = 3.0 \) s. The bead momentarily stops at \(t = 3.0 \) s. What is the kinetic energy of the bead at \(t = 10 \) s?

![Fig. 7-22](Image)

4 A bead with mass \(1.8 \times 10^{-2} \) kg is moving along a wire in the positive direction of an \(x \) axis. Beginning at time \(t = 0 \), when the bead passes through \(x = 0 \) with speed 12 m/s, a constant force acts on the bead. Figure 7-22 indicates the bead’s position at these four times: \(t_0 = 0 \), \(t_1 = 1.0 \) s, \(t_2 = 2.0 \) s, and \(t_3 = 3.0 \) s. The bead momentarily stops at \(t = 3.0 \) s. What is the kinetic energy of the bead at \(t = 10 \) s?

![Fig. 7-22](Image)

5 A father racing his son has half the kinetic energy of the son, who has half the mass of the father. The father speeds up by 1.0 m/s and then has the same kinetic energy as the son. What are the original speeds of (a) the father and (b) the son?

6 A force \(\vec{F}_x \) is applied to a bead as the bead is moved along a straight wire through displacement \(+5.0 \) cm. The magnitude of \(\vec{F}_x \) is set at a certain value, but the angle \(\phi \) between \(\vec{F}_x \) and the bead’s displacement can be chosen. Figure 7-23 gives the work \(W \) done by \(\vec{F}_x \) on the bead for a range of \(\phi \) values; \(W_{\phi} = 25 \) J. How much work is done by \(\vec{F}_x \) if \(\phi \) is (a) 64° and (b) 147°?

![Fig. 7-23](Image)

sec. 7-5 Work and Kinetic Energy

7 A 3.0 kg body is at rest on a frictionless horizontal air track when a constant horizontal force \(\vec{F} \) acting in the positive direction of an \(x \) axis along the track is applied to the body. A stroboscopic graph of the position of the body as it slides to the right is shown in Fig. 7-24. The force \(\vec{F} \) is applied to the body at \(t = 0 \), and the graph records the position of the body at 0.50 s intervals. How much work is done on the body by the applied force \(\vec{F} \) between \(t = 0 \) and \(t = 2.0 \) s?

![Fig. 7-24](Image)

8 A ice block floating in a river is pushed through a displacement \(\vec{d} = (15 \text{ m})\hat{i} - (12 \text{ m})\hat{j} \) along a straight embankment by rushing water, which exerts a force \(\vec{F} = (210 \text{ N})\hat{i} - (150 \text{ N})\hat{j} \) on the block. How much work does the force do on the block during the displacement?

9 The only force acting on a 2.0 kg canister that is moving in an \(xy \) plane has a magnitude of 5.0 N. The canister initially has a velocity of 4.0 m/s in the positive \(x \) direction and some time later has a velocity of 6.0 m/s in the positive \(y \) direction. How much work is done on the canister by the 5.0 N force during this time?

10 A coin slides over a frictionless plane and across an \(xy \) coordinate system from the origin to a point with \(xy \) coordinates (3.0 m, 4.0 m) while a constant force acts on it. The force has magnitude 2.0 N and is directed at a counterclockwise angle of 100° from the positive direction of the \(x \) axis. How much work is done by the force on the coin during the displacement?

11 A 12.0 N force with a fixed orientation does work on a particle as the particle moves through the three-dimensional displacement \(\vec{d} = (2.00\text{ m} - 4.00\text{ m}) + 3.00\text{ km} \). What is the angle between the force and the displacement if the change in the particle’s kinetic energy is (a) \(+30.0 \text{ J} \) and (b) \(-30.0 \text{ J} \)?

12 A can of bolts and nuts is pushed 2.00 m along an \(x \) axis by a broom along the greasy (frictionless) floor of a car repair shop in a version of shuffleboard. Figure 7-25 gives the work \(W \) done on the
2.0 m/s², (a) what magnitude speed of 37 m/s. If a force slows them to a stop at a constant rate of a downhill track onto a horizontal straight track with an initial A luge and its rider, with a total mass of 85 kg, emerge from ••13 F now moves across a frictionless floor. The force magnitudes are ••14 Figure 7-26 shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but now moves across a frictionless floor. The force magnitudes are \(F_1 = 3.00 \text{ N}, \ F_2 = 4.00 \text{ N}, \) and \(F_3 = 10.0 \text{ N}, \) and the indicated angles are \(\theta_1 = 50.0° \) and \(\theta_2 = 35.0°. \) What is the net work done on the canister by the three forces during the first 4.00 m of displacement?

Fig. 7-26 Problem 14.

••15 Figure 7-27 shows three forces applied to a trunk that moves leftward by 3.00 m over a frictionless floor. The force magnitudes are \(F_1 = 5.00 \text{ N}, \ F_2 = 9.00 \text{ N}, \) and \(F_3 = 3.00 \text{ N}, \) and the indicated angle is \(\theta = 60.0°. \) During the displacement, (a) what is the net work done on the trunk by the three forces and (b) does the kinetic energy of the trunk increase or decrease?

Fig. 7-27 Problem 15.

••16 An 8.0 kg object is moving in the positive direction of an \(x \) axis. When it passes through \(x = 0, \) a constant force directed along the axis begins to act on it. Figure 7-28 gives its kinetic energy \(K \) versus position \(x \) as it moves from \(x = 0 \) to \(x = 5.0 \text{ m}; K_0 = 30.0 \text{ J}. \) The force continues to act. What is \(v \) when the object moves back through \(x = -3.0 \text{ m}? \)

Fig. 7-28 Problem 16.

••17 SSM WWW A helicopter lifts a 72 kg astronaut 15 m vertically from the ocean by means of a cable. The acceleration of the astronaut is \(g/10. \) How much work is done on the astronaut by (a) the force from the helicopter and (b) the gravitational force on her? Just before she reaches the helicopter, what are (c) kinetic energy and (d) speed?

••18 (a) In 1975 the roof of Montreal’s Velodrome, with a weight of 360 kN, was lifted by 10 cm so that it could be centered. How much work was done on the roof by the forces making the lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one end of a car that had fallen onto her son when a jack failed. If her panic lift effectively raised 4000 N (about \(1/2 \) of the car’s weight) by 5.0 cm, how much work did her force do on the car?

••19 SSM In Fig. 7-29, a block of ice slides down a frictionless ramp at angle \(\theta = 50° \) while an ice worker pulls on the block (via a rope) with a force \(F_r \) that has a magnitude of 50 N and is directed up the ramp. As the block slides through distance \(d = 0.50 \text{ m} \) along the ramp, its kinetic energy increases by 50 J. How much greater would its kinetic energy have been if the rope had not been attached to the block?

Fig. 7-29 Problem 19.

••20 A block is sent up a frictionless ramp along which an \(x \) axis extends upward. Figure 7-30 gives the kinetic energy of the block as a function of position \(x; \) the scale of the figure’s vertical axis is set by \(K_x = 40.0 \text{ J}. \) If the block’s initial speed is 4.00 m/s, what is the normal force on the block?

Fig. 7-30 Problem 20.

••21 SSM A cord is used to vertically lower an initially stationary block of mass \(M \) at a constant downward acceleration of \(g/4. \) When the block has fallen a distance \(d, \) find (a) the work done by the cord’s force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block.

••22 A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The
lift is performed in three stages, each requiring a vertical distance of 10.0 m: (a) the initially stationary spelunker is accelerated to a speed of 5.00 m/s; (b) he is then lifted at the constant speed of 5.00 m/s; (c) finally he is decelerated to zero speed. How much work is done on the 80.0 kg rescuee by the force lifting him during each stage?

23 In Fig. 7-31, a constant force \(F_x \) of magnitude 82.0 N is applied to a 3.00 kg shoe box at angle \(\phi = 53.0^\circ \), causing the box to move up a frictionless ramp at constant speed. How much work is done on the box when the box has moved through vertical distance \(h = 0.150 \) m?

24 In Fig. 7-32, a horizontal force \(F_x \) of magnitude 20.0 N is applied to a 3.00 kg psychology book as the book slides a distance \(d = 0.500 \) m up a frictionless ramp at angle \(\theta = 30.0^\circ \). (a) During the displacement, what is the net work done on the book by \(F_x \), the gravitational force on the book, and the normal force on the book? (b) If the book has zero kinetic energy at the start of the displacement, what is its speed at the end of the displacement?

25 In Fig. 7-33, a 0.250 kg block of cheese lies on the floor of a 900 kg elevator cab that is being pulled upward by a cable through distance \(d_1 = 2.40 \) m and then through distance \(d_2 = 10.5 \) m. (a) Through \(d_1 \), if the normal force on the block from the floor has constant magnitude \(F_N = 3.00 \) N, how much work is done on the cab by the force from the cable? (b) Through \(d_2 \), if the work done on the cab by the (constant) force from the cable is 92.61 kJ, what is the magnitude of \(F_N \)?

sec. 7-7 Work Done by a Spring Force

26 In Fig. 7-9, we must apply a force of magnitude 80 N to hold the block stationary at \(x = -2.0 \) cm. From that position, we then slowly move the block so that our force does \(+4.0 \) J of work on the spring–block system; the block is then again stationary. What is the block’s position? (Hint: There are two answers.)

27 A spring and block are in the arrangement of Fig. 7-9. When the block is pulled out to \(x = +4.0 \) cm, we must apply a force of magnitude 360 N to hold it there. We pull the block to \(x = 11 \) cm and then release it. How much work does the spring do on the block as the block moves from \(x = +5.0 \) cm to (a) \(x = +3.0 \) cm, (b) \(x = -3.0 \) cm, (c) \(x = -5.0 \) cm, and (d) \(x = -9.0 \) cm?

28 During spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with large catapults that are made with surgical hose mounted on a window frame. A balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. Assume that the stretching of the hose obeys Hooke’s law with a spring constant of 100 N/m. If the hose is stretched by 5.00 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length?

29 In the arrangement of Fig. 7-9, we gradually pull the block from \(x = 0 \) to \(x = +3.0 \) cm, where it is stationary. Figure 7-34 gives the work that our force does on the block. The scale of the figure’s vertical axis is set by \(W_s = 1.0 \) J. We then pull the block out to \(x = +5.0 \) cm and release it from rest. How much work does the spring do on the block when the block moves from \(x = +5.0 \) cm to (a) \(x = +4.0 \) cm, (b) \(x = -2.0 \) cm, and (c) \(x = -5.0 \) cm?

30 In Fig. 7-9a, a block of mass \(m \) lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant \(k \)) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched (\(x = 0 \)). When a constant horizontal force \(F \) in the positive direction of the \(x \) axis is applied to it. A plot of the resulting kinetic energy of the block versus its position \(x \) is shown in Fig. 7-35. The scale of the figure’s vertical axis is set by \(K_s = 4.0 \) J. (a) What is the magnitude of \(F \)? (b) What is the value of \(k \)?

31 SSM WWW The only force acting on a 2.0 kg body as it moves along a positive \(x \) axis has an \(x \) component \(F_x = -6x \) N, with \(x \) in meters. The velocity at \(x = 3.0 \) m is 8.0 m/s. (a) What is the velocity of the body at \(x = 4.0 \) m? (b) At what positive value of \(x \) will the body have a velocity of 5.0 m/s?
The scale of the figure’s vertical axis is set by \(F_y = 10.0 \, \text{N} \). How much work is done by the force as the block moves from the origin to \(x = 8.0 \, \text{m} \)?

37 Figure 7-39 gives the acceleration of a 2.00 kg particle as an applied force \(F_x \) moves it from rest along an \(x \) axis from \(x = 0 \) to \(x = 9.0 \, \text{m} \). The scale of the figure’s vertical axis is set by \(a_x = 6.0 \, \text{m/s}^2 \). How much work has the force done on the particle when the particle reaches (a) \(x = 4.0 \, \text{m} \), (b) \(x = 7.0 \, \text{m} \), and (c) \(x = 9.0 \, \text{m} \)? What is the particle’s speed and direction of travel when it reaches (d) \(x = 4.0 \, \text{m} \), (e) \(x = 7.0 \, \text{m} \), and (f) \(x = 9.0 \, \text{m} \)?

38 A 1.5 kg block is initially at rest on a horizontal frictionless surface. A single force acts on a 3.0 kg particle-like object whose position is given by \(F_x = (2.5 - x^2) \hat{i} \, \text{N} \), where \(x \) is in meters and the initial position of the block is \(x = 0 \). (a) What is the kinetic energy of the block as it passes through \(x = 2.0 \, \text{m} \)? (b) What is the maximum kinetic energy of the block between \(x = 0 \) and \(x = 2.0 \, \text{m} \)?

39 A force \(F = (cx - 3.00x^2) \hat{i} \) acts on a particle as the particle moves along an \(x \) axis, with \(F \) in newtons, \(x \) in meters, and \(c \) a constant. At \(x = 0 \), the particle’s kinetic energy is 20.0 J; at \(x = 3.00 \, \text{m} \), it is 11.0 J. Find \(c \).

40 A can of sardines is made to move along an \(x \) axis from \(x = 0.25 \, \text{m} \) to \(x = 1.25 \, \text{m} \) by a force with a magnitude given by \(F = \exp(-4x^2) \), with \(x \) in meters and \(F \) in newtons. (Here exp is the exponential function.) How much work is done on the can by the force?

41 A single force acts on a 3.0 kg particle-like object whose position is given by \(x = 3.0t - 4.0t^2 + 1.0t^3 \), with \(x \) in meters and \(t \) in seconds. Find the work done on the object by the force from \(t = 0 \) to \(t = 4.0 \, \text{s} \).

42 Figure 7-40 shows a cord attached to a cart that can slide along a frictionless horizontal rail aligned along an \(x \) axis. The left end of the cord is pulled over a pulley, of negligible mass and friction and at cord height \(h = 1.20 \, \text{m} \), so the cart slides from \(x_1 = 3.00 \, \text{m} \) to \(x_2 = 1.00 \, \text{m} \). During the move, the tension in the cord is a constant 25.0 N. What is the change in the kinetic energy of the cart during the move?
A force of 5.0 N acts on a 15 kg body initially at rest. Compute the work done by the force in (a) the first, (b) the second, and (c) the third seconds and (d) the instantaneous power due to the force at the end of the third second.

A skier is pulled by a towrope up a frictionless ski slope that makes an angle of 12° with the horizontal. The rope moves parallel to the slope with a constant speed of 1.0 m/s. The force of the rope does 900 J of work on the skier as the skier moves a distance of 8.0 m up the incline. (a) If the rope moved with a constant speed of 2.0 m/s, how much work would the force of the rope do on the skier as the skier moved a distance of 8.0 m up the incline? At what rate is the force of the rope doing work on the skier when the rope moves with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

A 100 kg block is pulled at a constant speed of 5.0 m/s across a horizontal floor by an applied force of 122 N directed 37° above the horizontal. What is the rate at which the force does work on the block?

The loaded cab of an elevator has a mass of 3.0 × 10³ kg and moves 210 m up the shaft in 23 s at constant speed. At what average rate does the force from the cable do work on the cab?

A machine carries a 4.0 kg package from an initial position of \(\vec{d}_i = (0.50 \text{ m})\hat{i} + (0.75 \text{ m})\hat{j} + (0.20 \text{ m})\hat{k} \) to a final position of \(\vec{d}_f = (7.50 \text{ m})\hat{i} + (12.0 \text{ m})\hat{j} + (7.20 \text{ m})\hat{k} \). The constant force applied by the machine on the package is \(\vec{F} = (2.00 \text{ N})\hat{i} + (4.00 \text{ N})\hat{j} + (6.00 \text{ N})\hat{k} \). For that displacement, find (a) the work done on the package by the machine’s force and (b) the average power of the machine’s force on the package.

A 0.30 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (\(k = 500 \text{ N/m} \)) whose other end is fixed. The ladle has a kinetic energy of 10 J as it passes through its equilibrium position (the point at which the spring force is zero). (a) At what rate is the spring doing work on the ladle as the ladle passes through its equilibrium position? (b) At what rate is the spring doing work on the ladle when the spring is compressed 0.10 m and the ladle is moving away from the equilibrium position?

A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg, which is required to travel upward 54 m in 3.0 min, starting and ending at rest. The elevator’s counterweight has a mass of only 950 kg, and so the elevator motor must help. What average power is required of the force the motor exerts on the cab via the cable?

At a certain instant, a particle-like object is acted on by a force \(\vec{F} = (4.0 \text{ N})\hat{i} - (2.0 \text{ N})\hat{j} + (9.0 \text{ N})\hat{k} \) while the object’s velocity is \(\vec{v} = -(2.0 \text{ m/s})\hat{i} + (4.0 \text{ m/s})\hat{j} \). What is the instantaneous rate at which the force does work on the object? (b) At some other time, the velocity consists of only a \(y \) component. If the force is unchanged and the instantaneous power is \(-12 \text{ W} \), what is the velocity of the object?

A force \(\vec{F} = (3.00 \text{ N})\hat{i} + (7.00 \text{ N})\hat{j} + (7.00 \text{ N})\hat{k} \) acts on a 2.00 kg mobile object that moves from an initial position of \(\vec{d}_i = (3.00 \text{ m})\hat{i} - (2.00 \text{ m})\hat{j} + (5.00 \text{ m})\hat{k} \) to a final position of \(\vec{d}_f = -(5.00 \text{ m})\hat{i} + (4.00 \text{ m})\hat{j} + (7.00 \text{ m})\hat{k} \) in 4.00 s. Find (a) the work done on the object by the force in the 4.00 s interval, (b) the average power due to the force during that interval, and (c) the angle between vectors \(\vec{d}_i \) and \(\vec{d}_f \).

A 0.30 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (\(k = 500 \text{ N/m} \)) whose other end is fixed. The ladle has a kinetic energy of 8.0 J? (a) At what rate is the spring doing work on the ladle? (b) At some other time, the velocity consists of only a \(y \) component. If the force is unchanged and the instantaneous power is \(-12 \text{ W} \), what is the velocity of the object?

The only force acting on a 2.0 kg body as the body moves along an \(x \) axis varies as shown in Fig. 7-42. The scale of the figure’s vertical axis is set by \(F_x = 4.0 \text{ N} \). The velocity of the body at \(x = 0 \) is \(4.0 \text{ m/s} \). (a) What is the kinetic energy of the body at \(x = 0 \)? (b) At what value of \(x \) will the body have a kinetic energy of 8.0 J? (c) What is the maximum kinetic energy of the body between \(x = 0 \) and \(x = 5.0 \text{ m} \)?

A horse pulls a cart with a force of 40 lb at an angle of 30° above the horizontal and moves along at a speed of 6.0 mi/h. (a) How much work does the force do in 10 min? (b) What is the average power (in horsepower) of the force?

An initially stationary 2.0 kg object accelerates horizontally and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval, how much work is done on the object by the force accelerating it? What is the instantaneous power due to that force (b) at the end of the interval and (c) at the end of the first half of the interval?

A 230 kg crate hangs from the end of a rope of length \(L = 12.0 \text{ m} \). You pull horizontally on the crate with a varying force \(\vec{F} \) to move it distance \(d = 4.00 \text{ m} \) to the side (Fig. 7-43). (a) What is the magnitude of \(\vec{F} \)? (b) What is the total work done on it? (c) The work done by the gravitational force on the crate, and (d) the work done by the pull on the crate from the rope? (e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your
64 **CHAPTER 7 KINETIC ENERGY AND WORK**

force \(\vec{F} \) does on the crate. (f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)?

58 To pull a 50 kg crate across a horizontal frictionless floor, a worker applies a force of 210 N, directed 20° above the horizontal. As the crate moves 3.0 m, what work is done on the crate by (a) the worker’s force, (b) the gravitational force on the crate, and (c) the normal force on the crate from the floor? (d) What is the total work done on the crate?

59 An explosion at ground level leaves a crater with a diameter that is proportional to the energy of the explosion raised to the \(\frac{1}{3} \) power; an explosion of 1 megaton of TNT leaves a crater with a 1 km diameter. Below Lake Huron in Michigan there appears to be an ancient impact crater with a 50 km diameter. What was the kinetic energy associated with that impact, in terms of (a) megatons of TNT (1 megaton yields \(4.2 \times 10^{15} \) J) and (b) Hiroshima bomb equivalents (13 kilotons of TNT each)? (Ancient meteorite or comet impacts may have significantly altered Earth’s climate and contributed to the extinction of the dinosaurs and other life-forms.)

60 A frightened child is restrained by her mother as the child slides down a frictionless playground slide. If the force on the child from the mother is 100 N up the slide, the child’s kinetic energy increases by 30 J as she moves down the slide a distance of 1.8 m. (a) How much work is done on the child by the gravitational force during the 1.8 m descent? (b) If the child is not restrained by her mother, how much will the child’s kinetic energy increase as she comes down the slide that same distance of 1.8 m?

61 How much work is done by a force \(\vec{F} = (2x N) \hat{i} + (3 N) \hat{j} \), with \(x \) in meters, that moves a particle from a position \(\vec{r}_1 = (2 m) \hat{i} + (3 m) \) to a position \(\vec{r}_2 = -(4 m) \hat{i} - (3 m) \) ?

62 A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of \(k = 2.5 \) N/cm (Fig. 7-44). The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the spring? (Assume that friction is negligible.) (d) If the speed at impact is doubled, what is the maximum compression of the spring?

63 SSM To push a 25.0 kg crate up a frictionless incline, angled at 25.0° to the horizontal, a worker exerts a force of 209 N parallel to the incline. As the crate slides 1.50 m, how much work is done on the crate by (a) the worker’s applied force, (b) the gravitational force on the crate, and (c) the normal force exerted by the incline on the crate? (d) What is the total work done on the crate?

64 Boxes are transported from one location to another in a warehouse by means of a conveyor belt that moves with a constant speed of 0.50 m/s. At a certain location the conveyor belt moves for 2.0 m up an incline that makes an angle of 10° with the horizontal, then for 2.0 m horizontally, and finally for 2.0 m down an incline that makes an angle of 10° with the horizontal. Assume that a 2.0 kg box rides on the belt without slipping. At what rate is the force of the conveyor belt doing work on the box as the box moves (a) up the 10° incline, (b) horizontally, and (c) down the 10° incline?

65 In Fig. 7-45, a cord runs around two massless, frictionless pulleys. A canister with mass \(m = 20 \) kg hangs from one pulley, and you exert a force \(\vec{F} \) on the free end of the cord. (a) What must be the magnitude of \(\vec{F} \) if you are to lift the canister at a constant speed? (b) To lift the canister by 2.0 cm, how far must you pull the free end of the cord? During that lift, what is the work done on the canister by (c) your force (via the cord) and (d) the gravitational force? (Hint: When a cord loops around a pulley as shown, it pulls on the pulley with a net force that is twice the tension in the cord.)

66 If a car of mass 1200 kg is moving along a highway at 120 km/h, what is the car’s kinetic energy as determined by someone standing alongside the highway?

67 SSM A spring with a pointer attached is hanging next to a scale marked in millimeters. Three different packages are hung from the spring, in turn, as shown in Fig. 7-46. (a) Which mark on the scale will the pointer indicate when no package is hung from the spring? (b) What is the weight \(W \) of the third package?
A force $\vec{F} = (4.0 \text{ N})\hat{j} + (4 \text{ N})\hat{i}$ acts on a particle as the particle moves through displacement $\vec{d} = (3.0 \text{ m})\hat{i} - (2.0 \text{ m})\hat{j}$. (Other forces also act on the particle.) What is c if the work done on the particle by force \vec{F} is (a) 0, (b) 17 J, and (c) -18 J?

A constant force of magnitude 10 N makes an angle of 150° (measured counterclockwise) with the positive x axis. Figure 7-49 shows the position x of the particle. The curve is given by $\vec{F} = \alpha x^2\hat{i}$, with $\alpha = 9.0 \text{ N} \cdot \text{m}^2$. Find the work done on the particle by the force as the particle moves from $x = 1.0 \text{ m}$ to $x = 3.0 \text{ m}$ by (a) estimating the work from the graph and (b) integrating the force function.

A force in the positive direction of an x axis acts on an object moving along the x axis. If the magnitude of the force is $F = 10e^{-2t} \text{ N}$, with x in meters and F in newtons. The case starts at rest at the position $x = 0$, and it moves until it is again at rest. (a) Plot the work W does on the case as a function of x. (b) At what position is the work maximum, and (c) what is that maximum value? (d) At what position has the work decreased to zero? (e) At what position is the case again at rest?

A 2.0 kg lunchbox is sent sliding over a frictionless surface, in the positive direction of an x axis along the surface. Beginning at time $t = 0$, a steady wind pushes on the lunchbox in the negative direction of the x axis. Figure 7-49 shows the position x of the lunchbox as a function of time t as the wind pushes on the lunchbox. From the graph, estimate the kinetic energy of the lunchbox at (a) $t = 1.0 \text{ s}$ and (b) $t = 5.0 \text{ s}$. (c) How much work does the force from the wind do on the lunchbox from $t = 1.0 \text{ s}$ to $t = 5.0 \text{ s}$?

Numerical integration. A breadbox is made to move along an x axis from $x = 0.15 \text{ m}$ to $x = 1.20 \text{ m}$ by a force with a magnitude given by $F = \exp(-2x^2)$, with x in meters and F in newtons. (Here exp is the exponential function.) How much work is done on the breadbox by the force?