PROTEIN GEL ELECTROPHORESIS

INTRODUCTION

In this lab, you will explore fish diversity by use of SDS-PAGE (Sodium dodecyl sulfate polyacrylamide gel electrophoresis). Based on the results of SDS-PAGE, you will construct an evolutionary tree that shows the relationship of five different fish. In the past, only visible traits were used for classification of species. Now, modern taxonomy (systematics) uses molecular biology as another tool to classify and show evolutionary relationships among organisms. DNA, RNA, and protein diversity are all used. For this lab, you will create a protein “fingerprint” of the five fish to create your evolutionary trees. The first part of this lab will involve extraction of protein from fish muscle. You will be given frozen tissue from five different fish to prepare samples for electrophoresis. The second part of this lab will involve loading and running the gels, followed by staining.

SDS-PAGE is similar to DNA gel electrophoresis in that it resolves different size proteins through a gel matrix as they move towards a positive electrode. Some of the differences are that 1) SDS is used to denature proteins and coat them so that they all carry negative charges. Recall that DNA is already negatively charged. Proteins, however, can have a variety of net charge, so in order for it to move through a gel, they must all be coated with SDS. SDS is included in Laemmli sample buffer, the type of buffer you will dissolve your proteins in. 2) The type of gel is a thin polyacrylamide layer sandwiched by two glass plates. Your gels are already cast and will be set up for you. The gels are vertical and have wells at the top end. This is where you will load your samples. 3) The staining procedure uses a blue stain called Coomassie Blue. It will require an overnight destain to visualize the gel. No ethidium bromide is used.

PROTEIN EXTRACTION

MATERIALS
- 5 fliptop microfuge tubes
- 5 screwcap microfuge tubes
- 1 ml transfer pipet
- Fish samples
- Laemmli sample buffer
- 95 °C water bath

PROCEDURE
1. To make this a blind study, assign a letter (e.g. A-E) to each fish sample to be investigated. Keep a record of which fish was assigned to which number. Label 5 fliptop microfuge tubes A-E.
2. Add 250 µl of Laemmli sample buffer to each tube.
3. For each sample, obtain a piece of fish muscle approximately 0.25 x 0.25 x 0.25 cm³ (the size of a grain of rice) and transfer it to the appropriately labeled tube.
4. Gently flick the microfuge tube 15 times with your finger to agitate the tissue in the buffer.
5. Incubate the samples for 5 minutes at room temperature to extract and solubilize the proteins.
6. Label screwcap tubes A-E.
7. Pipette out the liquid from flip-top tubes and transfer to screw-cap tube with same letter. Leave any undissolved tissue behind. You do not have to transfer the entire volume, however it is important to have no solid tissue in your sample. Screw down the cap. Heat your fish samples for 5 minutes at 95 °C to denature proteins and prepare for electrophoresis.

Protein Gel Electrophoresis

Materials
- Fish protein extracts from lab one - 5 species
- Actin & myosin standard, 12.5 µl - 1 vial
- Precision Plus Protein Kaleidoscope prestained standards, 6 µl - 1 vial
- 15%, 10-well, Ready Gel precast gel
- 1–20 µl adjustable-volume micropipet
- Prot/Elec pipet tips for gel loading
- Mini-PROTEAN 3 electrophoresis module (gel box)
- 1x Tris-glycine-SDS (TGS) running buffer 500 ml per gel box
- Power supply (200 V constant) to be shared between workstations
- Sample Loading Guide – for 10 well comb
- Buffer dam (only required if running 1 gel/box)
- Staining trays - 1 per 2 gels
- Bio-Safe Coomassie stain for proteins - 50 ml per 2 gels
- Water bath set at 80–95°C
- Water for gel destaining (tap water is fine)

Procedure
1. Claim a gel in one of the preassembled gel boxes. You will be sharing the box with another group since each box holds two gels. Use a piece of tape to label your side of the box.
2. Using ultrathin tips only, load 10 µl of each of your protein samples gently into the middle 5 wells. You may rinse out the tip in the gel running buffer in between samples.
3. Load 10 µl of the actin & myosin standard gently into an available well.
4. Load 5 µl of the Kaleidoscope standard into an available well.
5. After loading, place the lid on the tank, and insert the leads into the power supply, matching red to red and black to black. Set the voltage to 200 V and run the gels for about 30 minutes. Watch for the separation of the standard. Run gels until blue dye front is at the end of the gel.
6. When gels are finished running, turn off the power supply and disconnect the leads.
7. Remove the lid and lift out the electrode assembly and clamping frame.
8. Pour out the running buffer from the electrode assembly. Open the cams and remove the gel cassettes.
9. Now it’s time to stain the proteins in your gel. Lay your gel cassette flat on the bench with the short plate facing up. Cut the tape along the sides of the gel cassette. Carefully pry apart the gel plates, using your fingertips. The gel will usually adhere to one of the plates. Transfer the plate with the gel adhering to it to a tray containing tap water allowing the liquid to detach the gel from the plate. The gel may also be lifted directly (and gently!) from the plate and placed into the water.
10. Carefully pour out the water and replace with 50 ml of Bio-Safe Coomassie stain per 2 gels.
11. Allow the gels to stain for 1 hour, with shaking if available.
12. After 1 hour discard the stain and replace it with a large volume of water to destain the gel overnight with rocking action if available.

13. Your gels will be photographed and posted online. You will have a chance to view your gels next lab period.

ANALYSIS

Find your Kaleidoscope standard lane on your gel and locate the bands based on the figure to the right. Locate your actin and myosin standards. These muscle proteins are highly conserved and should be the same in all of your fish lanes. Myosin heavy chain is 210 kD and actin is 42 kD. Myosin light chains vary from 15-25 kD. These may appear as a smear. If you do not see these proteins in your lanes, you may have not properly extracted your muscle proteins. You will use other muscle proteins that are more variable to construct your cladogram. These proteins tend to fall in the small molecular weight range of 10-30 kD.

Since you will be focusing on low weight proteins from 10-30 kD, be sure that you can identify the standard bands 10 kD to 37 kD. Measure all bands in each lane of your gel between 10 kD and 30 kD and put distances in the table below. Create a standard curve using your Kaleidoscope standard data. Use a log scale. Insert a trendline with a formula so that you can estimate band sizes for other lanes. Calculate estimated fragment sizes and input in the table below.

Based on the similarity/differences of bands in each of the 5 fish lanes, you will construct a cladogram.

<table>
<thead>
<tr>
<th>Kaleidoscope standard</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Actin and Myosin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist. (mm)</td>
<td>Dist. kD</td>
<td>Est. kD</td>
<td>Dist. (mm)</td>
<td>Est. kD</td>
<td>Dist. (mm)</td>
<td>Est. kD</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A cladogram shows the relationship among several species. Traditionally, only physical characteristics were used, but now molecular data has become commonly used. A well-constructed cladogram has branchpoints that only give two possibilities (dichotomous). The lower the branchpoint, the earlier the
split occurred in evolutionary time. So think of time as on a vertical axis. This is also why organisms that exist today are all listed on top. The very top can be thought of as present time. For example, in the cladogram below, A, B, C, D, and E are all listed on top. C and B or more closely related to each other than D and B because the branchpoint that connects C and B is much higher than the branchpoint that connects D and B. The most distantly related organisms to all of the others would be A.

Based on your data, you will construct a cladogram similar to above. Your cladogram may have more branching than the one above and that is acceptable. Your goal is to best represent the relationship among all of your 5 fish. The best way to start is to use the table below to place each species in order of similarity to each of the other species. For instance, you want to know the order of similarity of A to all of the others. Use your gel and data in table 1 to compare the presence/absence of bands in each fish. Do this for one fish at a time. Once table 2 is complete, you can begin to construct a cladogram that satisfies all of the similarities and differences in the table. Use the actual name of the fish in your cladogram, not letters A-E.

<table>
<thead>
<tr>
<th>Fish</th>
<th>Most Similar</th>
<th>2nd Most Similar</th>
<th>3rd Most Similar</th>
<th>4th Most Similar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUESTIONS FOR YOUR REPORT

1. (2 pts) Present an abstract of your work. Your abstract should include a brief description (1/2 page) of 1) what you set out to learn, 2) what procedures you performed, and 3) a summary of your data or discoveries.

2. Present your gel with all lanes properly labeled.

3. (2 pts) Present Table 1 and your Standard Curve.

4. (2 pts) Present Table 2 and your Cladogram.

5. In words, describe the logic you used to construct your cladogram based on Table 2.

6. (2 pts) If you wanted to know for sure you had myosin in each of the fish lanes, what technique would you perform? Describe the technique and how you would perform it to specifically identify myosin.